New technique opens new research possibilities for novel drugs and tasty food

March 5, 2018, Wageningen University
Credit: Wageningen University

Scientists at Wageningen University have developed a new technique that opens new possibilities for research into novel drugs and tastier, healthier food. The new approach is called 'receptomics' and was published in the scientific journal Sensors. The technique measures the response of many different receptor proteins to series of extracts or pure substances in a flow cell, and predicts responses in the human body, thus reducing the need for test panels or animal experiments. The receptomics technique may also be useful for the development of personalised food and medication.

Our bodies contain a wide variety of – proteins that detect substances and pass on signals to the cell to which they are linked. Humans have tongue and nasal receptors for detecting aromas and flavours, for example, but also receptors in the intestines for detecting hormones, which ensure that intestinal take the proper action, such as absorbing or digesting a certain nutrient from the intestine. All these are encoded by genes.

Microscopically small droplets

The Wageningen scientists 'printed' the DNA for many receptor proteins as miniscule droplets on glass slides, forming spots in a grid pattern covering approximately one square centimetre. In each DNA droplet, they also included DNA that codes for a coloured signaling that can visually report the response of the receptor protein.

Cells are grown on the glass slide on top of the DNA grid. The two types of DNA in each spot are absorbed into the cells. The cells use the DNA to make the receptor protein and the coloured signalling protein. This creates small groups of cells with the size of the DNA spots. Each group of cells produces a unique receptor protein and the coloured signalling protein.

Credit: Wageningen University

The glass slide is then placed in a device that pumps a very thin layer of liquid across the slide. "This liquid may be an extract of a medicinal plant, or from a regular tomato or apple," says Maarten Jongsma, molecular biologist at Wageningen University & Research and coordinator of the research. "Some receptor proteins will react to the liquid that runs over the cells. Thanks to the coloured signalling protein, we can determine under a microscope which receptor proteins respond and which do not."

After each measurement, the cells are 'washed' by pumping a washing liquid across the cells to remove the trigger and return to normal. The cells are then ready for a new sample exposure. This way series of samples can be measured.

Smart mathematics

The final step in studying the responses of receptor protein is the use of smart and powerful statistics and software. Jongsma says, "These living cells often produce a variable and complex response to an extract that is a sum of everything in the extract, the amount of DNA that is being expressed and the nature of the host cell. This was why it was initially difficult to draw conclusions." Jongsma's research team, which includes cell biologists, molecular biologists, statisticians and software engineers, developed software that allows them to easily find this needle in the haystack.

Credit: Wageningen University

With the receptomics technique, the scientists now have a powerful new tool which allows them to record responses to, say, foods or medicinal plants with a wide variety of receptor proteins and predict effects in humans.

The technique may also offer opportunities to provide more substantiated personal advice on nutrition and medication in the future. Jongsma: "Each person has a slightly different set of receptor proteins. By determining which types of receptor protein are on a patient's DNA and linking them to the receptomics analysis results, doctors may be able to give even more customised advice in the future."

Explore further: Researchers observe individual cellular receptors at work

More information: undefined undefined et al. Calcium Imaging of GPCR Activation Using Arrays of Reverse Transfected HEK293 Cells in a Microfluidic System, Sensors (2018). DOI: 10.3390/s18020602

Related Stories

Researchers map trends in drug development

October 31, 2017

From a drug perspective, G protein-coupled receptors are the most utilised cell receptors in the body. They are uniquely accessible at the cell surface, and a third of all drugs sold in the US target them.

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

Recommended for you

Researchers report two-faced Janus membrane applications

July 20, 2018

Named for the mythical god with two faces, Janus membranes—double-sided membranes that serve as gatekeepers between two substances—have emerged as a material with potential industrial uses. Creating two distinct "faces" ...

Chemists characterize the fatal fungus among us

July 19, 2018

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenges is that the fungal cell wall is poorly understood, ...

Infrared sensor as new method for drug discovery

July 19, 2018

Using an infrared sensor, biophysicists at Ruhr-Universität Bochum (RUB) have succeeded in analysing quickly and easily which active agents affect the structure of proteins and how long that effect lasts. Thus, Prof Dr. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.