Study reveals new insights into how hybrid perovskite solar cells work

March 20, 2018 by Mark Shwartz, SLAC National Accelerator Laboratory
This illustration depicts what happens inside a hybrid perovskite material in the first few trillionths of a second after it's hit with simulated sunlight (upper left). The blue and green spheres are atoms, arranged in double pyramids as shown at left. When light hits, electrons start to separate from positively charged “holes,” the first step in creating an electrical current (yellow streaks). Meanwhile, atoms begin to vibrate within the perovskite’s lattice-like structure. Scientists detected these processes by analyzing the terahertz radiation (red streaks) the processes released. Credit: Greg Stewart/SLAC National Accelerator Laboratory

Scientists have gained new insights into a fundamental mystery about hybrid perovskites, low-cost materials that could enhance or even replace conventional solar cells made of silicon.

Under a microscope, a slice of perovskite looks like an abstract mosaic of random grains of crystal. The mystery is how this patchwork of tiny, imperfect grains can transform sunlight into electricity as efficiently as a single crystal of pure silicon.

A recent study by scientists at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory offers new clues. Writing in the March 15th issue of Advanced Materials, the scientists provide a new understanding of how electric charges separate in perovskites a few billionths of a second following the absorption of , the crucial first step in generating an electric current.

The study is the first to probe the inner workings of hybrid perovskites at the atomic scale using laser pulses that match the intensity of solar radiation, and thus mimic natural sunlight. The authors say their discovery could lead to improvements in the performance of perovskite solar and a new way to probe their functionality.

Perovskites and Silicon

Most solar cells today are made of purified silicon manufactured at temperatures above 3,000 degrees Fahrenheit (1,600 degrees Celsius). These rigid silicon panels can last for decades in all kinds of weather conditions.

Perovskite solar cells, although far less durable, are thinner and more flexible than silicon cells and can be produced near room temperature from a hybrid mixture of cheap organic and inorganic , like iodine, lead and methylammonium.

Researchers, including Stanford co-author Michael McGehee, have shown that are as efficient at converting light to electricity as commercially available silicon cells and can even outperform them. This combination of efficiency, flexibility and easy synthesis has fueled a worldwide race to develop commercial-grade perovskites that can withstand long-term exposure to heat and precipitation.

"Perovskites are very promising materials for photovoltaics," said lead author Burak Guzelturk, a postdoctoral scholar at Stanford and SLAC. "But people wonder how they can achieve such high efficiencies."

Electrons and Holes

All solar cells operate on the same principle. Photons of sunlight absorbed by the crystalline material kick negatively charged electrons into an excited state. The freed electrons leave behind positively charged spaces or "holes" that separate from one another. This separation gives rise to an electric current.

Pure silicon, with its highly ordered atomic structure, provides a direct path for electrons and holes to travel through the solar cell. But with perovskites, the road is far from smooth.

"Perovskites are typically filled with defects," said co-author Aaron Lindenberg, an associate professor at SLAC and Stanford and investigator with the Stanford Institute of Materials and Energy Sciences (SIMES). "They're not even close to being perfect crystals, yet somehow the electric currents don't see the defects."

Terahertz Emission

For the study, the research team used laser pulses to simulate waves of sunlight from both ends of the visible light spectrum – high-energy violet light and low-energy infrared light. The results were measured at the picosecond timescale. One picosecond is one trillionth of a second.

"In the first picoseconds after sunlight hits the perovskite, the electrons and holes in the crystalline lattice start to split," Lindenberg explained. "The separation was uncovered by measuring the emission of high-frequency terahertz light pulses oscillating a trillion times per second from the perovskite thin film. This is the first time anyone has observed terahertz emission from hybrid perovskites."

The terahertz emission also revealed that electrons and holes closely interact with lattice vibrations in the crystalline material. This interaction, which occurs on a femtosecond timescale, could help explain how electric currents navigate through the patchwork of crystal grains in hybrid perovskites.

"As the electric charges separate, we observe a sharp spike in the terahertz emission, matching a vibrational mode of the material," Guzelturk said. "That gives us clear evidence that the electrons and holes are strongly coupling with the atomic vibrations in the material."

This finding raises the possibility that coupling to the lattice vibration could protect the electrons and holes from charged defects in the perovskite, shielding the as it travels through the solar cell. Similar scenarios have been proposed by other research teams.

"This is one of the first observations of how the local atomic structure of a hybrid perovskite material responds in the first trillionths of a second after absorbing sunlight," Lindenberg said. "Our technique could open up a new way of probing a solar cell right when the photon is absorbed, which is really important if you want to understand and build better materials. The conventional way is to put electrodes on the device and measure the current, but that essentially blurs out all of the microscopic processes that are key. Our all-optical, electrode-less approach with femtosecond time resolution avoids that problem."

Hot Electrons

The researchers also found that terahertz light fields are much stronger when is hit with high-energy light waves.

"We found that radiated terahertz light is orders of magnitudes more intense when you excite the electrons with violet light versus low-energy infrared light," Lindenberg said. "That was an unexpected result."

This discovery could provide new insights on high-energy "hot" electrons, Guzelturk said.

"Violet light imparts electrons with excess kinetic energy, creating that move much faster than other electrons," he said. "However, these hot electrons lose their excess energy very rapidly."

Harnessing the energy from hot electrons could lead to a new generation of high-efficiency solar cells, added Lindenberg.

"One of the grand challenges is finding a way to capture the excess energy from a hot electron before it relaxes," he said. "The idea is that if you could extract the current associated with hot electrons before the energy dissipates, you could increase the efficiency of the solar cell. People have argued that it's possible to create hot electrons in perovskites that live much longer than they do in silicon. That's part of the excitement around perovskites."

The study revealed that in , hot electrons separate from holes faster and more efficiently than electrons excited by infrared light.

"For the first time we can measure how fast this separation occurs," Lindenberg said. "This will provide important new information on how to design that use hot electrons."

Toxicity and Stability

The ability to measure terahertz emissions could also lead to new research on non-toxic alternatives to conventional lead-based perovskites, said Guzelturk.

"Most of the alternative materials being considered are not as efficient at generating electricity as lead," he said. "Our findings might allow us to understand why lead composition works so well while other materials don't, and to investigate the degradation of these devices by looking directly at the and how it changes."

Explore further: Slow 'hot electrons' could improve solar cell efficiency

More information: Burak Guzelturk et al. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling, Advanced Materials (2018). DOI: 10.1002/adma.201704737

Related Stories

Slow 'hot electrons' could improve solar cell efficiency

January 16, 2018

Photons with energy higher than the band gap of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat and ...

Twisting molecule wrings more power from solar cells

November 14, 2017

Inside a solar cell, sunlight excites electrons. But these electrons often don't last long enough to go on to power cell phones or warm homes. In a promising new type of solar cell, the solar-excited electrons have better ...

Revealing the microscopic mechanisms in perovskite solar cells

March 21, 2017

A material with the perovskite crystal structure has become very popular for solar cells. While most perovskites are inorganic compounds, this new material is a hybrid of relatively inexpensive organic and inorganic materials. ...

Recommended for you

Research gives new ray of hope for solar fuel

April 24, 2018

A team of Renewable Energy experts from the University of Exeter has pioneered a new technique to produce hydrogen from sunlight to create a clean, cheap and widely-available fuel.

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

katesisco
2 / 5 (1) Mar 20, 2018
So the perovskite vibrates because of the multi facets?
antialias_physorg
3 / 5 (2) Mar 20, 2018
Researchers, including Stanford co-author Michael McGehee, have shown that perovskite solar cells are as efficient at converting light to electricity as commercially available silicon cells and can even outperform them.

I wasn't aware that perovskite cells had come this far already, so I googled a bit for how their efficiency has changed over the years and....wow...the increase in efficiency that has been achieved in recent years is nothing short of amazing.

https://www.googl...ZrYwTZM:
dnatwork
4 / 5 (1) Mar 20, 2018
I just saw another article on here about topological insulators. I wonder if the imperfect crystal structure in perovskites is riddled with topological insulators, such that the electrons have to flow outward (because they can only follow the edges of all the defects).
mackita
not rated yet Mar 20, 2018
Lead perowskites also have layered structure ala graphene - the electrons would spread along layers being shielded by organic ligands / bulky cations from scattering.
mackita
not rated yet Mar 20, 2018
The perowskite research gained fast progress. For example first study on perowskite solar cells from 2009 reported the efficiency about 3.8%, whereas the last ones achieved 21.1% efficiency at normal operating conditions. Similarly perowskite LEDs show stabilized power-conversion efficiencies of 21.1% and outputs at 18% under operational conditions, even after 250 hours. The problem is, the stability of inorganic LED is still higher by at least two orders of magnitude: at the light intensities which inorganic LEDs produce the perowskite LEDs degrade just after 70 - 150 minutes. The reason is, the perowskites forming these LEDs are metastable at room temperature - if they would be used at higher temperatures, they would paradoxically perform better. The organic perovskite crystals are also quite brittle and soft: we cannot expect high durability from such a material, even if it would be stable.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.