Researcher helps classify new means of renewable light energy

March 27, 2018 by Kayla Wiles, Purdue University

Purdue professor Jeff Miller worked with researchers from the University of California, Los Angeles to characterize extremely small titanium dioxide that could help convert visible light into renewable energy.

On its own, captures but not visible light, leaving out half of the solar spectrum. UCLA researchers discovered that adding boron oxide to titanium dioxide resulted in nanoparticles capable of absorbing a wider range of light to be transformed for electricity and other energy uses.

Miller's group helped the researchers to understand how titanium dioxide's size and structure played a role in its ability to capture .

"When you go to very, very small sizes, it changes the fundamental properties of a particle," said Miller, a professor in Purdue's Davidson School of Chemical Engineering. "But the size is what gave titanium its unique properties."

Findings published on March 5 in Nature Materials. The next steps would be fabricating the modified titanium dioxide into solar arrays to capture and transform light into useful energy.

"Titanium dioxide has always been intensively investigated for solar capture, but it's never been able to find widespread commercial use because it only captures a small fraction of the light. Now that it can capture a larger fraction of the light, it's going to be more efficient for the production of solar energy applications," Miller said.

Explore further: Chemists convert titanium nanoparticles into an efficient weapon against pollution

More information: Dahee Jung et al. A molecular cross-linking approach for hybrid metal oxides, Nature Materials (2018). DOI: 10.1038/s41563-018-0021-9

Related Stories

Hydrogen generation without the carbon footprint

July 15, 2008

A greener, less expensive method to produce hydrogen for fuel may eventually be possible with the help of water, solar energy and nanotube diodes that use the entire spectrum of the sun's energy, according to Penn State researchers. ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

Researchers make coldest quantum gas of molecules

February 21, 2019

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts ...

LMC S154 is a symbiotic recurrent nova, study suggests

February 21, 2019

Astronomers have conducted observations of a symbiotic star in the Large Magellanic Cloud (LMC), known as LMC S154, which provide new insights about the nature of this object. Results of these observations, presented in a ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.