Why is it so hot at night in some cities?

March 12, 2018, CNRS
Credit: CC0 Public Domain

During the nighttime, it is hotter in the city than in nearby suburbs or the countryside. But just how much hotter differs between cities. Researchers from the MSE2 (CNRS / MIT) international joint research laboratory and the Centre Interdisciplinaire des Nanosciences de Marseille (CNRS / Aix-Marseille University)1 have shown that the determining factor is how cities are structured: more organized cities, like many in North America with straight and perpendicular streets, trap more heat. Conversely, cities that are less organized, like those founded long ago, shed heat easily. The team's findings, published in Physical Review Letters (March 9, 2018), suggest new directions to explore for optimal urban planning and energy management.

Urban islands (UHIs) are created when the air temperature rises higher in cities than in the surrounding suburbs and rural areas. In the US, this phenomenon affects 80% of the urban population. In populated areas, UHIs can lead to greater consumption (to power air conditioning, for example), more air pollution, a lower quality of life, and poorer health. Some cities have applied strategies to limit UHIs—including the addition of more green spaces—but the environmental and economic impact of heat islands, at a national or even regional scale, has still barely been quantified.

The researchers in this study considered major factors governing rises in temperature, such as the thermal mass of buildings and the extent to which, at night, they radiate heat absorbed during the day. To do so, they looked at temperatures recorded in urban and over several years as well as at data on footprints, combined with a heat radiation model. For the fifty-some cities they studied—among them, New York, Chicago, and Boston—this method made it possible to demonstrate that the effects of nighttime UHIs vary according to urban geometry. Buildings can exchange heat more or less readily depending on their level of spatial organization. The research team measured the latter with physics applications that reduce the complex geography of urban construction to a simpler, statistically determined representation using building clusters. They demonstrated that a high level of urban organization—as typified by most North American cities—results in more pronounced UHI effects and greater heat retention. The opposite is true for more "disorganized" cities.

In countries with hot or temperate climates, the UHI effect leads to significantly higher energy bills. In cold climates, on the other hand, it could potentially help reduce energy demand. Population growth estimates can be used to identify countries that stand to benefit most from the UHI effect. This knowledge can help policymakers optimize building energy consumption and thereby lighten carbon emissions at the , regional, and even state level.

Explore further: Urban heat island effects depend on a city's layout

More information: J. M. Sobstyl et al. Role of City Texture in Urban Heat Islands at Nighttime, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.108701

Related Stories

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

How urban heat affects bee populations

February 22, 2018

North Carolina is home to 500 species of wild bees, yet only a subset of these are common in cities and suburbs. People encourage wild bees by planting flowers and creating pollinator gardens to provide the pollen and nectar ...

Recommended for you

The hunt for leptoquarks is on

September 19, 2018

Matter is made of elementary particles, and the Standard Model of particle physics states that these particles occur in two families: leptons (such as electrons and neutrinos) and quarks (which make up protons and neutrons). ...

Searching for errors in the quantum world

September 19, 2018

The theory of quantum mechanics is well supported by experiments. Now, however, a thought experiment by ETH physicists yields unexpected contradictions. These findings raise some fundamental questions—and they're polarising ...

Fiber optic sensor measures tiny magnetic fields

September 19, 2018

Researchers have developed a light-based technique for measuring very weak magnetic fields, such as those produced when neurons fire in the brain. The inexpensive and compact sensors could offer an alternative to the magnetic ...

Researchers push the boundaries of optical microscopy

September 19, 2018

The field of optical microscopy research has developed rapidly in recent years. Thanks to the invention of a technique called super-resolution fluorescence microscopy, it has recently become possible to view even the smaller ...

Extremely small and fast: Laser ignites hot plasma

September 19, 2018

When light pulses from an extremely powerful laser system are fired onto material samples, the electric field of the light rips the electrons off the atomic nuclei. For fractions of a second, a plasma is created. The electrons ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.