Researcher makes bold move by releasing nanotech 'recipe'

March 7, 2018, Houston Methodist

In a rare move, a Houston Methodist researcher is sharing his recipe for a new, more affordable way to make nanoparticles. This will empower any laboratory in the world to easily create similar nanoparticles and could lead to a whole new way of delivering biotherapeutic drugs and do it more quickly.

"We're the only lab in the world doing this," said Ennio Tasciotti, Ph.D., director of the Center for Biomimetic Medicine at the Houston Methodist Research Institute and corresponding author on a paper coming out March 7 in Advanced Materials. "There are several questions about how our system works, and I can't answer all of them. By giving away the so-called 'recipe' to make biomimetic nanoparticles, a lot of other labs will be able to enter this field and may provide additional solutions and applications that are beyond the reach of only one laboratory. You could say it's the democratization of nanotechnology."

In the article, Tasciotti and his colleagues show how to standardize nanoparticle production to guarantee stability and reproducibility, while increasing yield. Eliminating the need for multi-million-dollar facilities, Tasciotti and his team demonstrate this using a readily available and relatively affordable piece of benchtop equipment to manufacture nanoparticles in a controlled, adjustable and low-cost manner.

"Nanoparticles are generally made through cryptic protocols, and it's very often impossible to consistently or affordably reproduce them," Tasciotti said. "You usually need special, custom-made equipment or procedures that are available to only a few laboratories. We provide step-by-step instructions so that now everybody can do it."

For decades nanoparticles have been made out of bioinert, or inorganic, substances that don't interact with the body. In more recent years, nanoparticles were made to be bioactive, meaning they could respond to the environment. Now, Tasciotti is pushing the field forward by creating biomimetic nanoparticles that resemble cell composition and work in synergy with the laws that govern the physiology of the body.

"The body is so smart in the ways it defends itself. The immune system will eventually recognize nanoparticles no matter how well you make them," Tasciotti said. "In my lab, we make nanoparticles out of the cell membrane of the very same that patrol the blood stream. When we put these biomimetic, or bioinspired, back in the body, the immune cells do not recognize them as something different, as they're made of their same building blocks, so there is no adverse response."

Despite the complexity of this new class of particles, Tasciotti says it's incredibly simple how they put it together, which is why he decided to publish this paper.

"While our lab will remain fully devoted to this line of research, if somebody else develops some solutions using our protocols that are useful in clinical care, it's still a good outcome," he said. "After all, the ultimate reason why we are in translational science is for the benefit of the patients."

Explore further: Tailoring nanoparticles to evade immune cells and prevent inflammatory response

More information: Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach, Advanced Materials, DOI: 10.1002/adma.201702749 , http://onlinelibrary.wiley.com/doi/10.1002/adma.201702749/full

Related Stories

Nanoparticles that look, act like cells

January 31, 2013

(Phys.org)—By cloaking nanoparticles in the membranes of white blood cells, scientists at The Methodist Hospital Research Institute may have found a way to prevent the body from recognizing and destroying them before they ...

Nanoscale Trojan horses treat inflammation

May 23, 2016

Nanosized Trojan horses created from a patient's own immune cells have successfully treated inflammation by overcoming the body's complex defense mechanisms, perhaps leading to broader applications for treating diseases characterized ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.