Tailoring nanoparticles to evade immune cells and prevent inflammatory response

April 10, 2017
Circulating white blood cells, commonly referred to as leukocytes (large yellow clusters), can be seen lining an inflamed vessel wall along with leukosomes (small yellow speckles). Leukosomes, designed to mimic white blood cells, go unnoticed as they accumulate at the inflamed vessel (purple background), allowing them to concentrate their therapeutic payload at the target site. Credit: Houston Methodist

A Houston Methodist-led research team showed that the systemic administration of nanoparticles triggers an inflammatory response because of blood components accumulating on their surface. This finding may help researchers create more effective ways to avoid activating the immune system and more precisely direct therapies in patients.

In the journal ACS Nano, the team of nanomedicine and regenerative medicine scientists recently described how specially-engineered (leukosomes) injected into mice can prevent the formation of a layer of biomolecules (protein corona) around their surface. The body's natural defense response to the formation of this protein is to filter out the foreign objects, in this case the nanoparticles. The presence of immune system regulators, known as macrophage receptors, on the surface of the leukosomes improved the amount of time these nanoparticles remained in the body to reach their target.

Last year, Ennio Tasciotti, Ph.D, senior author and director of the Center for Biomimetic Medicine at Houston Methodist Research Institute and team created these leukosomes and evaluated their ability to treat localized inflammation (May 23, 2016, Nature Materials). Leukosomes are able to target inflamed tissues because their design mimics immune cell membranes.

"Now we have a clearer understanding of how to use our leukosomes to evade those immune cells and prevent the body's ," Tasciotti said. "We've known overactive immune cells can behave like Pac Men, gobbling up the nanoparticles and ridding the body of these 'foreign invaders' before they reach the intended target."

Learning how to treat inflammation by overcoming the body's own defense mechanisms may lead to broader applications for treating diseases characterized by inflammation such as cancer, cardiovascular and autoimmune diseases.

While the research in ACS Nano helps to improve understanding of the overall properties of leukosomes, further studies are needed to confirm the benefits to patients and ways to prevent the human body from rejecting targeted therapies.

Explore further: Nanoscale Trojan horses treat inflammation

More information: Claudia Corbo et al. Unveiling the Protein Corona of Circulating Leukocyte-like Carriers, ACS Nano (2017). DOI: 10.1021/acsnano.7b00376

Related Stories

Nanoscale Trojan horses treat inflammation

May 23, 2016

Nanosized Trojan horses created from a patient's own immune cells have successfully treated inflammation by overcoming the body's complex defense mechanisms, perhaps leading to broader applications for treating diseases characterized ...

Nanoparticles that look, act like cells

January 31, 2013

(Phys.org)—By cloaking nanoparticles in the membranes of white blood cells, scientists at The Methodist Hospital Research Institute may have found a way to prevent the body from recognizing and destroying them before they ...

How does your immune system react to nanomedicine?

October 4, 2016

Katie Whitehead, assistant professor of chemical engineering at Carnegie Mellon University, has focused her research efforts on two clear objectives: treating and preventing disease. Her clinical-minded approach to laboratory ...

Recommended for you

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.