Spatial structure of bound hole states in black phosphorous

February 21, 2018, National University of Singapore
Spatial structure of bound hole states in black phosphorous
(a) Illustration of the STM technique for probing bound hole states in BP. (b) Elliptical shape observed for the ground bound hole states (1s-like). (c) Dumbbell shape observed for the excited bound hole state (2px). Scale bar is 1 nm. Credit: National University of Singapore

NUS chemists have discovered that the bound states of "holes" (the absence of an electron which leads to a net positive charge) in black phosphorus changes from an extended ellipse into a dumbbell shape when it is electrically excited, providing new insights for its use in next generation electronic devices.

Phosphorus, a highly reactive element, can exist in a stable crystalline form known as black phosphorus (BP). BP is emerging as a potential two-dimensional (2D) material for the development of a new generation of electronic devices with faster transistors than those of today. This is due to its ability to have a tunable direct bandgap (for acting as a switch), high carrier mobility (for carrying charges at high speed) and outstanding in-plane anisotropic properties (for controlling conducting properties along a specific crystal orientation).

As the native defects and impurities introduced during the synthesis and processing of BP affect its material properties and device characteristics, it is important to have a better understanding of these effects at the atomic level, so as to develop devices with better performance.

A team led by Prof LU Jiong from the Department of Chemistry, NUS has discovered that when BP goes from a non-excited ground state to an excited state, the spatial shape of its bound hole evolves from an extended elliptical shape to a dumbbell shape. A bound state refers to the tendency of a particle to remain localised in a specific region when subjected to a potential field. In BP, each hole interacts and orbits around the negatively charged core, forming bound hole states. This is analogous to the Bohr model for the hydrogen atom, in which the single electron encircles the atomic nucleus. The team made this discovery by using low temperature scanning tunnelling microscopy (STM), an atomic-resolution imaging technique, and operated it at 4.5 kelvin to probe the material surface. At such low temperature, the STM tip can be positioned over individual defects with an ultralow drift that is required for obtaining stable measurements. Their findings provide a generic picture of the spatial structure and electronic properties of near shallow dopants (which require little energy to produce free carriers) in BP.

Prof Lu said, "The unexcited bound hole state (1s) exhibits an anisotropic elliptical shape, in sharp contrast to the symmetrical 1s orbital shape of the hydrogen atom. The spatial is a result of the bound hole states being strongly extended along one crystal orientation while being compressed along another crystal orientation. Our study directly captures the anisotropic behaviours of individual hole carriers in BP, offering unprecedented atomic insights into high-mobility transport anisotropy of BP transistors".

"We also demonstrated that the charge state of individual acceptors can be reversibly switched using the STM tip. The ability to manipulate the charge states of individual dopants may allow the realisation of a charge-based qubit and further development of quantum devices," added Prof Lu.

Explore further: Few-layer tellurium as a promising successor of black phosphorus

More information: Zhizhan Qiu et al. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b03356

Related Stories

Creating an electron-hole liquid at room temperature

February 2, 2018

Making a liquid out of electrons is complicated, but it opens the door to research in a wide variety of electronics. NC State physicists have created a phase diagram that can help researchers create this liquid at room temperature, ...

Using the dark side of excitons for quantum computing

December 20, 2017

To build tomorrow's quantum computers, some researchers are turning to dark excitons, which are bound pairs of an electron and the absence of an electron called a hole. As a promising quantum bit, or qubit, it can store information ...

Twisting molecule wrings more power from solar cells

November 14, 2017

Inside a solar cell, sunlight excites electrons. But these electrons often don't last long enough to go on to power cell phones or warm homes. In a promising new type of solar cell, the solar-excited electrons have better ...

Diamonds show promise for spintronic devices

January 29, 2018

Conventional electronics rely on controlling electric charge. Recently, researchers have been exploring the potential for a new technology, called spintronics, that relies on detecting and controlling a particle's spin. This ...

Recommended for you

Observing cellular activity, one molecule at a time

May 21, 2018

Proteins and molecules assemble and disassemble naturally as part of many essential biological processes. It is very difficult to observe these mechanisms, which are often complex and take place at the nanometer scale, far ...

A soft solution to the hard problem of energy storage

May 18, 2018

It's great in the lab, but will it actually work? That's the million-dollar question perpetually leveled at engineering researchers. For a family of layered nanomaterials, developed and studied at Drexel University—and ...

New blood test rapidly detects signs of pancreatic cancer

May 17, 2018

Pancreatic cancer is expected to become the second deadliest cancer in the United States by 2030. It is tough to cure because it is usually not discovered until it has reached an advanced stage. But a new diagnostic test ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.