Nature has more than one way to make methane, say biochemists

January 15, 2018 by Mary-Ann Muffoletto, Utah State University
Utah State University biochemists, from left, Zhi-Yong Yang, Derek Harris, Rhesa Ledbetter and Professor Lance Seefeldt, along with collaborators from the University of Washington and Montana State University, report a bacterial, iron-only nitrogenase pathway for methane formation. Credit: Mary-Ann Muffoletto, USU

Methane is a potent greenhouse gas, trapping more solar radiation on Earth than carbon dioxide. It's also the primary component of natural gas, a critical fuel source for heating and other uses. For these reasons and more, scientists are keenly interested in how the gas is made.

A long-held assumption is that methane made by living organisms is made exclusively by a process called methanogenesis. Not so fast, say Utah State University and University of Washington biochemists, who report a bacterial, iron-only nitrogenase pathway for methane formation. Further the iron-only variant of nitrogenase can transform into methane in a single, enzymatic step.

USU biochemists Lance Seefeldt, Derek Harris, Rhesa Ledbetter and Zhi-Yong Yang, along with collaborators Carrie Harwood, Mary Lidstrom, Yanning Zheng, Zheng Yu, Yanfen Fu and Katie Fixen of the University of Washington; as well as Saroj Poudel and Eric Boyd of Montana State University, publish findings in the January 15, 2018, advance online publication of Nature Microbiology.

"Our findings are significant because they give scientists a second target to chase in understanding biological formation and rising ," says Seefeldt, professor in USU's Department of Chemistry and Biochemistry. "In addition, the discovery could drive efforts to turn waste gasses into usable fuels."

The ability to accomplish large-scale capture of environmentally damaging byproducts from burning into clean, alternative fuels has far-reaching benefits, he says.

"It's currently a 'holy grail' of energy science," says Seefeldt, an American Association for the Advancement of Science Fellow. "The knowledge we're gradually gaining could be used to make fuels from waste gases, helping to improve the environment."

The team's work is supported by a grant awarded through the U.S. Department of Energy Office of Science's Energy Frontier Research Center program to the Center for Biological and Electron Transfer and Catalysis or "BETCy." Based at Montana State University, BETCy is a seven-institution collaboration, of which USU is a partner.

Explore further: Green light: Biochemists describe light-driven conversion of greenhouse gas to fuel

More information: Yanning Zheng, Derek F. Harris, Zheng Zu, Yanfen Fu, Saroj Poudel, Rhesa Ledbetter, Kathryn Fixen, Zhi-Yong Yang, Eric Boyd, Mary Lidstrom, Lance Seefeldt and Caroline Harwood. "A pathway for biological methane production using bacterial iron-only nitrogenase," Nature Microbiology. 15 January 2018. DOI: 10.1038/s41564-017-0091-5

Related Stories

Recommended for you

World's oldest cheese found in Egyptian tomb

August 15, 2018

Aging usually improves the flavor of cheese, but that's not why some very old cheese discovered in an Egyptian tomb is drawing attention. Instead, it's thought to be the most ancient solid cheese ever found, according to ...

Molecular switch detects metals in the environment

August 15, 2018

An international team led by researchers from the University of Geneva (UNIGE), Switzerland, has designed a family of molecules capable of binding to metal ions present in the surrounding environment and providing an easily ...

A near-infrared fluorescent dye for long term bioimaging

August 15, 2018

A group of chemists at the Institute of Transformative Bio-Molecules (ITbM), Nagoya University, has developed a new near infrared (NIR) emitting photostable fluorescent dye PREX 710 (photo-resistant xanthene dye which can ...

Lipid droplets play crucial roles beyond fat storage

August 14, 2018

Lipid droplets: they were long thought of merely as the formless blobs of fat out of which spare tires and muffin tops were made. But these days, they're "a really hot area of research," says Michael Welte, professor and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.