Diverse causes behind frequency fluctuations in power grids

January 10, 2018, Forschungszentrum Juelich
Frequency measurements from 2015 (data: 50Hertz): the power grid frequency fluctuates around 50 Hz in the European grid and exhibits large jumps particularly in the trading intervals of 15 minutes. Usually, the grid frequency is within the yellow area but upward and downward deviations (grey) are particularly likely every 15 minutes. Credit: MPI für Dynamik und Selbstorganisation / Benjamin Schäfer

The use of renewables like the sun and wind can cause fluctuations in power grids. But what impact do these fluctuations have on security of supply? To answer this question, scientists from Juelich and Goettingen worked together with colleagues in London and Tokyo to analyse different types of fluctuations in several power grids in Europe, Japan, and the U.S., and came to surprising conclusions. Their study was published today in the peer-reviewed journal Nature Energy.

Our works at a of 50 hertz. Most power is generated by turbines in hydro- or coal power plants, which rotate at a speed of 50 revolutions per second. "When a consumer uses more electrical energy from the power grid, the grid frequency drops slightly before an increased energy feed-in re-establishes the original frequency," explains Benjamin Schaefer from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) in Goettingen and lead author of the study. "Deviations from the nominal value of 50 hertz must be kept to a minimum, as otherwise sensitive electrical devices could be damaged."

Renewable energy generation also causes grid frequency fluctuations because the wind does not always blow at the same speed and clouds constantly alter the feed-in from photovoltaic systems. A frequent suggestion for integrating renewable energy generators into the power grid involves breaking the grid down into small autonomous cells known as microgrids. This would allow a community with a combined heat and power unit and its own wind and photovoltaic generators, for example, to operate its energy systems in an autonomous manner.

But what impact would this division into small cells and additional renewable generators have on the power grid? To answer this question, scientists from Forschungszentrum Juelich and MPIDS analysed the grid frequency fluctuations in in different regions of the world. Using mathematical models, they predicted potential vulnerabilities and their causes.

First, they collated measurements from Europe, Japan, and the U.S. Then they systematically analysed the data and were surprised on two accounts. "The first surprise was that the grid showed particularly strong fluctuations every 15 minutes," says Dirk Witthaut from Juelich's Institute of Energy and Climate Research und the Institute for Theoretical Physics of the University of Cologne. "This is the exact time frame during which generators on the European electricity market agree on a new distribution for the electricity generated—this alters how much electricity is fed into the grid, and where. In Europe, at least, power trading therefore plays a key role in balancing grid frequency fluctuations."

The second surprise was that statistical grid fluctuations around the nominal value of 50 hertz do not follow the expected Gaussian distribution, which is a symmetrical distribution around an expected value. Instead, more extreme fluctuations are probable. Using mathematical models, the scientists calculated the expected fluctuations depending on the grid size and estimated the degree to which the fluctuations depended on renewables.

Power trading as a key factor

A comparison of the investigated regions showed that a large proportion of renewables did, indeed, lead to greater grid fluctuations. "For example, the share of wind and solar generation in the United Kingdom is much higher than in the U.S., leading to greater fluctuations in grid frequency," explains Dirk Witthaut. For an increased share of renewables, the scientists therefore recommend increased investment in an intelligent adjustment of generator and consumer according to the grid frequency—known as primary control and demand control.

One of the most interesting findings of the study, however, is that grid frequency caused by power trading appeared to be more significant than fluctuation caused by renewable feed-in.

The scientists also discovered that small power grids show larger fluctuations. "Our study indicates that dividing large and thus very slow grids—such as the synchronous grid of Continental Europe—into microgrids will cause larger frequency fluctuations," says Benjamin Schaefer. "Technically, microgrids are therefore only an option if today's very stringent frequency standards were to be relaxed."

Explore further: Alaskan microgrids offer energy resilience and independence

More information: Benjamin Schäfer et al, Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics, Nature Energy (2017). DOI: 10.1038/s41560-017-0058-z

Related Stories

Alaskan microgrids offer energy resilience and independence

December 26, 2017

The electrical grid in the contiguous United States is a behemoth of interconnected systems. If one section fails or is sabotaged, millions of citizens could be without power. Remote villages in Alaska provide an example ...

A new way to imagine grid stability

May 22, 2017

To ensure that the US electric grid remains stable and resilient, power generators in three main regions (Eastern, Western, and Texas) must be synchronized, all operating at the frequency of 60 hertz. Because generators interact ...

World's first dynamic grid control center

September 26, 2017

The transition to a new energy mix is making the power grid more dynamic. Siemens is coordinating a major research project designed to determine the extent to which existing control center technology can accommodate additional ...

UK grid power balance to get support from 10MW battery

October 17, 2017

(Tech Xplore)—A battery installation at a UK biomass power plant is making news this month. Supporters call it an important recognition of the "enormous potential for battery solutions" in the UK. The company is E.ON. The ...

Power storage buffers fluctuating solar power

May 11, 2012

Siemens has developed an energy-storage system that can act as a buffer in electrical power grids. The aim is to provide a buffer against short-term fluctuations in output from renewable energy sources. Such fluctuations ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.