More electronic materials opened up with new metal-organic framework

December 15, 2017, University of Warwick
Professor Richard Walton, University of Warwick. Credit: University of Warwick

More materials for electronic applications could be identified, thanks to the discovery of a new metal-organic framework (MOF) that displays electrical semiconduction with a record high photoresponsivity, by a global research collaboration involving the University of Warwick.

Research published today in Nature Communications shows how high photoconductivity and semiconductor behaviour can be added to MOFs—which already have a huge international focus for their in , sensing and catalysis.

The new work, conducted by Universities in Brazil, the United Kingdom and France – including researchers at Warwick's Department of Chemistry—found that the new MOF has a photoresponsivity of 2.5 × 105 A.W-1- the highest ever observed.

The MOF has been prepared using cobalt (II) ions and naphthalene diimides and acid as ligands. The structure shows anisotropic redox conduction, according to the directions of the crystal lattice. The conduction mechanism is sensitive to light, and may be modified or modulated according to the incident wavelength.

Photoactive and semiconducting MOFs are rare but desirable for electrical and photoelectrical devices.

These results are the first of this kind concerning MOFs and are the starting point for the possibility of discovery of even more functional materials, displaying properties suitable for practical applications.

The potential for use in electronic components and photoconversion devices, such as solar cells and photocatalysts provides a very exciting future for such materials.

Professor Richard Walton, from Warwick's Department of Chemistry, commented:

"The material we have discovered paves the way for new applications of a topical family of materials in many areas ranging from technology to energy conversion. We illustrate how MOFs that combine organic and inorganic components can produce unique functional materials from readily available chemicals.

"Our work was underpinned by Warwick's strengthening collaborative links with Brazilian universities and our exceptional equipment for analysis."

Explore further: Upconversion fluorescence in metal organic frameworks

More information: Evandro Castaldelli et al. Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework, Nature Communications (2017). DOI: 10.1038/s41467-017-02215-7

Related Stories

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.