New microscope sets a record for visualizing surface wetting properties

November 27, 2017, Aalto University
New microscope sets a record for visualizing surface wetting properties
The droplet probe of the microscope on a superhydrophobic golden birdwing (Troides aeacus) butterfly wing. Credit: Matti Hokkanen / Aalto University

The microscope is 1000 times more precise than current techniques, allowing the creation of wetting maps as a new concept for hydrophobic surface characterization.

Wetting is an everyday phenomenon that represents how well liquid spreads on a surface. When water comes into contact with an extremely water-repellent, or 'superhydrophobic' surface, droplets bead up and roll off easily. Aalto University researchers have developed a measurement technique called Scanning Droplet Adhesion Microscopy (SDAM) to understand and characterize the wetting properties of superhydrophobic materials.

"Our novel microscope will promote the understanding of how wetting emerges from surface microstructures. The measuring instrument can also detect microscopic defects of the surface, which could allow coating manufacturers to control the quality of materials. Defects in self-cleaning, anti-icing, anti-fogging, anti-corrosion or anti-biofouling products can impeach the functional integrity of the whole surface," explains Professor Robin Ras from Aalto University School of Science.

SDAM is extremely sensitive and 1000 times more precise than the current state-of-the-art wetting characterization methods. It also has the ability to measure minuscule features and inconsistencies of surfaces with microscale resolution. Existing instruments for measuring droplet adhesion forces only detect forces down to a micronewton level – not sensitive enough for .

"We have used a droplet of water to measure the water-repellent properties of a surface by recording the very tiny nanonewton force when the droplet touches the surface and when it separates from the surface. By measuring on many locations with micrometer spacing between the measurement points, we can construct a two-dimensional image of the surface's repellency, called a wetting map," explains Professor Quan Zhou from Aalto University School of Electrical Engineering.

Wetting maps are a new concept for hydrophobic surface characterization and open a window for investigating structure-property relationships in wetting.

Up to now, 'contact angle measurement' has been the typical method of measuring wetting properties of surfaces. It is prone to inaccuracies, though, for surfaces that are highly repellent to liquid. Unlike contact angle measurement, SDAM does not require a direct line of sight, which allows measuring uneven surfaces such as fabrics or biological surfaces. SDAM can also detect wetting properties of microscopic functional features that were previously very hard to measure. Those microscopic features are important in many biochips, chemical sensors and microelectromechanical components and systems.

Explore further: How slippery are water-repellent surfaces? (w/ Video)

More information: Ville Liimatainen et al. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces, Nature Communications (2017). DOI: 10.1038/s41467-017-01510-7

Related Stories

Smart surface enables advanced manipulation of droplets

July 25, 2017

For many years, engineers have sought to create a special kind of surface: one that can both repel and absorb liquids, and whose ability to do so—its "wetting behaviour"—can be quickly and precisely controlled. The technology ...

Team develops innovative, ideal liquid-repellent surfaces

November 14, 2017

On liquid-repellent surfaces, liquid droplets bounce away instead of being stuck. These surfaces are important in many fields, such as water-repellent clothes and anti-fouling kitchenware. Used as drag-reduction coatings ...

Recommended for you

Nanodiamonds as photocatalysts

October 19, 2018

Climate change is in full swing and will continue unabated as long as CO2 emissions continue. One possible solution is to return CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be ...

Producing defectless metal crystals of unprecedented size

October 19, 2018

A research group at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS), has published an article in Science describing a new method to convert inexpensive polycrystalline metal ...

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.