Unexpected discovery leads to new theory of liquid streaming

September 27, 2017
Unexpected discovery leads to new theory of liquid streaming
Researchers generated a stream of liquid by focusing a pulsed laser into water through glass etched with gold. Credit: Yanan Wang, Qiuhui Zhang, Zhiming Wang, Jiming Bao, University of Electronic Science and Technology of China, Henan University of Engineering, University of Houston

Researchers at the University of Houston were studying the nonlinear transmission of light through an aqueous suspension of gold nanoparticles when they noticed something unexpected. A pulse laser appeared to have forced the movement of a stream of liquid in a glass laboratory cuvette.

As they investigated, they realized something more complex was a work than a transfer of momentum from the photons to the liquid. Their observation led to a new optofulidics principle, explained in a paper published Sept. 27 in the journal Science Advances.

"It was not so simple," said Jiming Bao, associate professor of electrical and computer engineering at the University of Houston and lead author of the paper. "The momentum from a laser isn't strong enough to activate the movement."

Light usually passes straight through water without any absorption and scattering, so Bao said even strong momentum from the photons wouldn't generate a liquid stream. The turned out to be key - researchers found that the nanoparticles were initially needed to create the stream because they reacted to focused laser pulsing to create a plasmonic-acoustic cavity, a structure Bao described as a "bowl" that formed on the inner wall of the cuvette, a type of glass test tube.

The moving stream of liquid is triggered by ultrasound waves generated by the expansion and contraction of the nanoparticles, which occurs when nanoparticles on the cavity surface heat up and cool down with each laser pulse. The stream was captured on video.

Researchers from the University of Houston have reported a new principle of optofluidics to explain how a pulsed laser can create a liquid stream. The concept couples the known principles of acoustic streaming and photoacoustics. Credit: University of Houston

Once a cavity is created, the nanoparticles can be removed. Bao said streaming can be induced in any fluid.

The discovery has the potential to significantly improve work in a number of fields, including lab-on-a-chip experiments involving moving liquids, such as a droplet of blood, at a microscopic scale.

The driving of flow by acoustic wave is called acoustic streaming and was discovered by British scientist Michael Faraday in 1831; it is now widely used in microfluidics. The generation of ultrasound by gold nanoparticles, called photoacoustics, is also well known and is used in biomedical imaging.

This new optofluidics principle couples photoacoustics with acoustic streaming. "(It) can be used to generate high-speed flows inside any liquids without any chemical additives and apparent visible moving mechanical parts," the researchers wrote. "The speed, direction and size of the flow can be controlled by the laser."

The stream and flow pattern in the liquid. Credit: Wang et al., Sci. Adv. 2017;3: e1700555

In addition to Bao, researchers involved in the project include co-first authors Yanan Wang and Qiuhui Zhang, Zhuan Zhu, Feng Lin, Shuo Song, Md Kamrul Alam and Dong Liu, all of UH; Jiangdong Deng of Harvard University; Geng Ku of the University of Kansas; Suchuan Dong of Purdue University; and Zhiming Wang of the University of Electronic Science and Technology of China. Bao, Wang and Lin also have appointments at the University of Electronic Science and Technology of China.

Bao said more work is needed to better understand how the gold form the plasmonic-acoustic cavity and to determine better ways to generate a liquid stream, among other things. But there will be a number of applications for the newly discovered principle.

"Laser streaming will find applications in optically controlled or activated devices such as microfluidics, laser propulsion, laser surgery and cleaning, mass transport or mixing," the researchers conclude.

Explore further: Using four-dimensional electron microscopy to track diffusion of nanoparticles in a liquid

More information: Y. Wang el al., "Laser streaming: Turning a laser beam into a flow of liquid," Science Advances (2017). advances.sciencemag.org/content/3/9/e1700555

Related Stories

Using light to build nanoparticles into superstructures

March 15, 2011

Scientists in the Center for Nanoscale Materials and Argonne's Biosciences Division have demonstrated a remarkably simple, elegant, and cost-effective way of assembling nanoparticles into larger structures of any desired ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.