Researchers find 'internal clock' within live human cells

Researchers find 'internal clock' within live human cells
Human cell nuclei with fluorescently labeled chromatin (purple) and nuclear envelope (green). Credit: Fang-Yi Chu and Alexandra Zidovska, Department of Physics, New York University.

A team of scientists has revealed an internal clock within live human cells, a finding that creates new opportunities for understanding the building blocks of life and the onset of disease.

"Previously, a precise point of a cell in its life could only be determined by studying dead ," explains Alexandra Zidovska, an assistant professor of physics at New York University and the senior author of research, which appears in the latest issue of the journal Proceedings of the National Academy of Sciences (PNAS). "However, with this discovery, which shows that the nucleus exhibits rapid fluctuations that decrease during the of the cell, we can enhance our knowledge of both healthy and diseased human cells."

The study, which also included Fang-Yi Chu, an NYU doctoral candidate, and Shannon Haley, an NYU undergraduate, sought to expand our understanding of the cell nucleus during the cell cycle.

It's long been established that the shape and size of the cell nucleus change dramatically during a cell's life. Unknown, however, was whether or not the nucleus changes its shape over short periods of time. This was largely due to technical limitations of carrying out such measurements in living cells.

To capture this dynamic, the scientists used a state-of-the-art fluorescent microscope that enables them to see extremely small and very fast shape changes of the cell nucleus in living cells.

The researchers discovered that the human has a previously undetected type of motion: its nuclear envelope flickers, or fluctuates, over a period of a few seconds. Notably, the amplitude of these changes in shape decreases over time during the cell cycle. Moreover, this motion marks the first physical feature that systematically changes with the cell cycle.

"Therefore, this process can serve as an of the cell, telling you at what stage in the the cell is," explains Zidovska. "We know that structural and functional errors of the nuclear envelope lead to a large number of developmental and inherited disorders, such as cardiomyopathy, muscular dystrophy, and cancer. Illuminating the mechanics of nuclear shape fluctuations might contribute to efforts to understand the in health and disease."


Explore further

Chromosome mechanics guide nuclear assembly

More information: Fang-Yi Chu el al., "On the origin of shape fluctuations of the cell nucleus," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1702226114
Citation: Researchers find 'internal clock' within live human cells (2017, September 11) retrieved 24 June 2019 from https://phys.org/news/2017-09-internal-clock-human-cells.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
2159 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more