Method speeds up time to analyze complex microscopic images

August 31, 2017 by Dana Benson, Baylor College of Medicine

Cryo-electron tomography permits researchers to study in detail the microscopic structures inside of cells. Researchers who typically required a week of effort to dissect the 3-D structure of a single cell will now be able to do it in about an hour thanks to a new automated method developed by a team of scientists at Baylor College of Medicine and the National University of Singapore. The new method will allow scientists to study a large number and a variety of cell types in significantly less time, leading to a more detailed understanding of cellular processes and disease. The report appears in the journal Nature Methods.

"Cryo-electron tomography is a powerful technology for visualizing the architecture and structures inside of cells at about 100 times better resolution than that of the best light microscope," said corresponding author Dr. Steven Ludtke, co-director of the National Center for Macromolecular Imaging and the Center for Computational and Integrative Biomedical Research and professor of biochemistry at Baylor College of Medicine.

Cryo-electron tomography provides information about that cannot be obtained by any other current method. Scientists can study changes inside normal or as well as inside microorganisms. However, "the need for about one man-week of effort to manually annotate all of the structures and details within each cell has limited the widespread use of this technique," Ludtke said.

Looking to increase the efficiency of the time-consuming process of annotation, Ludtke and his colleagues have developed an automated method that requires less human participation. They tested their method using different , including human platelets and microorganisms such as

African trypanosomes and cyanobacteria. When they compared the new method with the traditional, they found that the new methodology correctly identified structures inside cells with a high level of accuracy.

"The new method reduces human effort from about one week per cell to about one hour per cell," Ludtke said.Researchers interested in applying this method will find it available at no cost at, together with an interface for training.

Explore further: Breakthrough in understanding mitochondria

More information: Muyuan Chen et al, Convolutional neural networks for automated annotation of cellular cryo-electron tomograms, Nature Methods (2017). DOI: 10.1038/nmeth.4405

Related Stories

In-cell NMR: A new application

March 8, 2017

The structure of biological macromolecules is critical to understanding their function, mode of interaction and relationship with their neighbours, and how physiological processes are altered by mutations or changes in the ...

Seeing viruses by both light and electron microscopy

January 6, 2017

Advances in both light and electron microscopy are improving scientists' ability to visualize viruses such as HIV, respiratory syncytial virus (RSV), measles, influenza, and Zika in their native states. Researchers from Emory ...

Recommended for you

When a defect might be beneficial

February 19, 2019

In the quest to design more efficient solar cells and light-emitting diodes (LEDs), a team of engineers has analyzed different types of defects in the semiconductor material that enables such devices to determine if and how ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.