New chromium-based superconductor has an unusual electronic state

July 25, 2017
Figure 1: Crystal structures of the new superconductor, an iron-based superconductor, and a high-temperature copper-oxide superconductor

When certain materials are cooled below a critical temperature they become superconductors, with zero electrical resistance. An international research team observed an unusual electronic state in new superconductor chromium arsenide. This finding could prove useful in future superconductor research and material design. The study was published on June 5 in Nature Communications.

These discoveries were made by a research team at the Chinese University of Hong Kong in collaboration with Associate Professor KOTEGAWA Hisashi (Kobe University Graduate School of Science) and other researchers from Kobe University and Kyoto University.

Well-known superconductors include high-temperature copper-oxide superconductors and iron-based . These have two-dimensional layered crystal structures. In contrast, chromium arsenide has a "non-symmorphic" formed by zigzag chains of chromium (see figure 1). The relationship between this crystal structure and its superconductivity has drawn attention from scientists.

The superconductivity of chromium arsenide was discovered in 2014 under pressure, and it is the first magnetic superconductor to incorporate chromium.

The research group found that at ultralow temperatures, the of chromium arsenide shows a linear increase against the magnetic field. In normal metals the resistance increases as a square of the magnetic field, creating a curved (parabolic) graph, but the magnetic field resistance of chromium arsenide makes a linear graph (see figure 2). Linear magnetic resistance is created under extremely special circumstances when electron mass within a solid effectively becomes smaller. There are cases of it occurring in non-magnetic low carrier materials, but chromium arsenide is a metal with strong magnetic properties and very different qualities from other materials that have shown linear magnetic resistance. The special crystal structure of chromium arsenide may have created this unusual electronic state.

These findings show that the superconductivity of features an unusual electronic state, information that could contribute to superconductivity research and material design.

Figure 2: Graph of the magnetic field dependence of electronic resistance for CrAs

Explore further: The origin of linear magnetoresistance—exotic or classical?

More information: Q. Niu et al. Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide, Nature Communications (2017). DOI: 10.1038/ncomms15358

Related Stories

The origin of linear magnetoresistance—exotic or classical?

December 9, 2016

New materials sometimes exhibit spectacular resistance phenomena, though the explanation does not always prove to be exotic. Physicists from the Nijmegen High Field Magnet Laboratory (HFML) and the ETH in Zürich have demonstrated ...

Scientists explain the theory behind Ising superconductivity

November 23, 2015

Superconductivity is a fascinating quantum phenomenon in which electrons form pairs and flow with zero resistance. However, strong enough magnetic field can break electron pairs and destroy superconductivity. Surprisingly, ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.