Perfect quantum portal emerges at exotic interface

Researchers at the University of Maryland have captured the most direct evidence to date of a quantum quirk that allows particles to tunnel through a barrier like it's not even there. The result, featured on the cover of ...

Computing faster with quasi-particles

Majorana particles are very peculiar members of the family of elementary particles. First predicted in 1937 by the Italian physicist Ettore Majorana, these particles belong to the group of so-called fermions, a group that ...

The most stable microscope in the world

Ph.D. candidate Irene Battisti of the Leiden Institute of Physics has developed the most vibration-free cryogenic scanning tunneling microscope in the world. The new microscope could shed light on unconventional superconductivity.

Successful tests of a cooler way to transport electricity

Like a metal python, the huge pipe snaking through a CERN high-tech hall is actually a new electrical transmission line. This superconducting line is the first of its kind and allows vast quantities of electrical current ...

Triplet superconductivity demonstrated under high pressure

Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.

page 1 from 23


Superconductivity is a phenomenon occurring in certain materials generally at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect). It was discovered by Heike Kamerlingh Onnes in 1911. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealization of "perfect conductivity" in classical physics.

The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, despite these imperfections, drops abruptly to zero when the material is cooled below its "critical temperature". An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source.

Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in pure samples of ferromagnetic metals.

In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. In addition, because the superconducting state persists up to more manageable temperatures, past the economically-important boiling point of liquid nitrogen (77 kelvin), more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered.

See also the history of superconductivity.

This text uses material from Wikipedia, licensed under CC BY-SA