Related topics: magnetic field · superconductors

Researchers find way to form diodes from superconductors

A group of researchers from Pisa, Jyväskylä, San Sebastian and MIT have demonstrated how a heterostructure consisting of superconductors and magnets can be used to create unidirectional current like that found in semiconductor ...

Researchers develop 'corrosion-free' copper thin films

Copper (Cu) is of fundamental importance to our daily lives due to its excellent electrical conductivity, as well as other valuable physical properties, such as the ability to draw copper into thin wires. Cu is the metal ...

Characterizing super-semi sandwiches for quantum computing

Semiconductors are the foundation of modern technology while superconductors with their zero electrical resistance could become the basis for future technologies, including quantum computers. So-called "hybrid structures"—carefully ...

page 1 from 19

Electrical resistance

The electrical resistance of an object is a measure of its opposition to the passage of a steady electric current. An object of uniform cross section will have a resistance proportional to its length and inversely proportional to its cross-sectional area, and proportional to the resistivity of the material.

Discovered by Georg Ohm in the late 1820s, electrical resistance shares some conceptual parallels with the mechanical notion of friction. The SI unit of electrical resistance is the ohm, symbol Ω. Resistance's reciprocal quantity is electrical conductance measured in siemens, symbol S.

The resistance of a resistive object determines the amount of current through the object for a given potential difference across the object, in accordance with Ohm's law:

where

For a wide variety of materials and conditions, the electrical resistance does not depend on the amount of current through or the amount of voltage across the object, meaning that the resistance R is constant for the given temperature. Therefore, the resistance of an object can be defined as the ratio of voltage to current:

In the case of nonlinear objects (not purely resistive, or not obeying Ohm's law), this ratio can change as current or voltage changes; the ratio taken at any particular point, the inverse slope of a chord to an I–V curve, is sometimes referred to as a "chordal resistance" or "static resistance".

This text uses material from Wikipedia, licensed under CC BY-SA