IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing

May 19, 2017 by Chris Sciacca
IBM scientists demonstrate ballistic nanowire connections, A potential future key component for quantum computing
Johannes Gooth is a postdoctoral fellow in the Nanoscale Devices & Materials group of the Science & Technology department at IBM Research – Zurich. His research is focused on nanoscale electronics and quantum physics. Credit: IBM Research

IBM scientists have achieved an important milestone toward creating sophisticated quantum devices that could become a key component of quantum computers. As detailed in the peer-review journal Nano Letters, the scientists have shot an electron through a III-V semiconductor nanowire integrated on silicon for the first time.

IBM scientists are driving multiple horizons in quantum computing, from the technology for the next decade based on superconducting qubits, towards novel quantum devices that could push the scaling limit of today's microwave technology down to the nanometer scale and that do not rely on superconducting components, opening a path towards room-temperature operation.

Now, IBM scientists in Zurich have made a crucial fundamental breakthrough in their paper Ballistic one-dimensional InAs nanowire cross-junction interconnects. Using their recently developed Template-Assisted-Selective-Epitaxy (TASE) technique to build ballistic cross-directional quantum communication links, they pioneered devices which can coherently link multiple functional for the reliable transfer of quantum information across nanowire networks. The nanowire acts as a perfect guide for the electrons, such that the full of the electron (energy, momentum, spin) can be transferred without losses.

By solving some major technical hurdles of controlling the size, shape, position and quality of III-V semiconductors integrated on Si, ballistic one-dimensional quantum transport has been demonstrated. While the experiments are still on a very fundamental level, such nanowire devices may pave the way towards fault-tolerant, scalable electronic quantum computing in the future.

The paper's lead author, IBM scientist Dr. Johannes Gooth, noted that the milestone has implications for the development of quantum computing. By enabling fully ballistic connections where particles are in flight at the nanoscale, the quantum system offers exponentially larger computational space.

Earlier this year, IBM launched an industry-first initiative to build commercially available universal systems. The planned "IBM Q" systems and services will be delivered via the IBM Cloud platform and will deliver solutions to important problems where patterns cannot be seen by classical computers because the data doesn't exist and the possibilities needed to explore to get to the answer are too enormous to ever be processed by classical systems.

Explore further: Five ways quantum computing will change the way we think about computing

More information: Johannes Gooth et al. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b00400

Related Stories

Refrigerator for quantum computers discovered

May 8, 2017

The global race towards a functioning quantum computer is on. With future quantum computers, we will be able to solve previously impossible problems and develop, for example, complex medicines, fertilizers, or artificial ...

The exciting new age of quantum computing

October 25, 2016

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.