Team develops large-scale stretchable and transparent electrodes

A Korean research team has developed a large-scale stretchable and transparent electrode for use as a stretchable display. The Korea Institute of Science and Technology (KIST) announced that a research team, led by Dr. Sang-Soo ...

On-chip single-mode CdS nanowire laser

In recent years, increasing attention has been paid to the integration of active nanowires with on-chip planar waveguides for on-chip light sources. Towards this goal, scientists in China demonstrated a highly compact on-chip ...

When superconductivity material science meets nuclear physics

Imagine a wire with a thickness roughly one-hundred thousand times smaller than a human hair and only visible with the world's most powerful microscopes. They can come in many varieties, including semiconductors, insulators ...

page 1 from 41

Nanowire

A nanowire is a nanostructure, with the diameter of the order of a nanometer (10−9 meters). Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important — hence such wires are also known as "quantum wires". Many different types of nanowires exist, including metallic (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO2,TiO2). Molecular nanowires are composed of repeating molecular units either organic (e.g. DNA) or inorganic (e.g. Mo6S9-xIx).

The nanowires could be used, in the near future, to link tiny components into extremely small circuits. Using nanotechnology, such components could be created out of chemical compounds.

This text uses material from Wikipedia, licensed under CC BY-SA