Related topics: graphene · transistors · electrons · solar cells · sensors

Taking 2-D materials to the MAX

Discovered by researchers at Drexel University as electrodes for energy applications, MXenes have become a research focus for KAUST. Husam Alshareef and his team specialize in creating nanomaterials for electronic and energy ...

To build a better semiconductor, first identify its defects

Gallium oxide is a remarkable wide-bandgap semiconductor material. Put simply, that means it could potentially be used to create electronic devices that can operate under extreme conditions – such as when exposed to high ...

A new way to corrosion-proof thin atomic sheets

A variety of two-dimensional materials that have promising properties for optical, electronic, or optoelectronic applications have been held back by the fact that they quickly degrade when exposed to oxygen and water vapor. ...

A stretchable and flexible biofuel cell that runs on sweat

A unique new flexible and stretchable device, worn against the skin and capable of producing electrical energy by transforming the compounds present in sweat, was recently developed and patented by CNRS researchers from l"Université ...

Using light to speed up computation

A group of researchers in Japan has developed a new type of processor known as PAXEL, a device that can potentially bypass Moore's Law and increase the speed and efficiency of computing. PAXEL, which stands for photonic accelerator, ...

A battery with a twist

Markus Niederberger's team of researchers at ETH has used stretchable materials to develop a battery that can be bent, stretched and twisted. For applications in bendable electronic devices, this is precisely the kind of ...

Brain-computer interfaces without the mess

It sounds like science fiction: controlling electronic devices with brain waves. But researchers have developed a new type of electroencephalogram (EEG) electrode that can do just that, without the sticky gel required for ...

Catch-22 in graphene based molecular devices resolved

The conductivity of Graphene has made it a target for many researchers seeking to exploit it to create molecular scale devices and now a research team jointly led by University of Warwick and EMPA have found a way past a ...

page 1 from 23

Electronics

Electronics is a branch of science and technology that deals with the flow of electrons through nonmetallic conductors, mainly semiconductors such as silicon. It is distinct from electrical science and technology, which deal with the flow of electrons and other charge carriers through metal conductors such as copper. This distinction started around 1906 with the invention by Lee De Forest of the triode. Until 1950 this field was called "radio technology" because its principal application was the design and theory of radio transmitters, receivers and vacuum tubes.

The study of semiconductor devices and related technology is considered a branch of physics, whereas the design and construction of electronic circuits to solve practical problems come under electronics engineering. This article focuses on engineering aspects of electronics.

This text uses material from Wikipedia, licensed under CC BY-SA