Molecular motor grows cell's microtubules

October 26, 2015, Pennsylvania State University

Motor proteins that pause at the ends of microtubules and produce pushing forces can also stimulate their growth, according to researchers at Penn State. The proteins' function could be a critical component in understanding cell division and nerve branching and growth.

Kinesins are a family of found in multicellular organisms. They function as 'little engines' within the cells and transport molecular cargo along , among other activities. The microtubules—25 nanometers thick or one ten- thousandth the diameter of a human hair—are hollow cylinders of the protein tubulin. They are extremely dynamic and have the ability to grow and shrink as the cell changes shape.

"We are trying to get under the hood of these motors and understand what makes their sequences unique," said William Hancock, professor of biomedical engineering, Penn State. "Because they carry out so many vital functions in the cells of the body, we really want to understand how they operate at the molecular level."

In total, there are 45 different kinesin motor proteins in humans. Hancock and Yalei Chen, graduate student in cell and developmental biology, Penn State's Huck Institute of the Life Sciences, tracked the movements of individual fluorescently-tagged kinesin-5 molecules in the laboratory and found that the motor pauses at the end of the microtubules. It then generates pushing forces, which slide the microtubules apart and essentially allow the motor to grow the microtubules. The researchers reported their results in a recent issue of Nature Communications.

The researchers bound microtubules to the surface of a microscope slide and added free tubulin subunits together with modified kinesin-5 motor proteins. The results, observed under a fluorescence microscope, showed that the addition of the motor proteins increased both the rate and the persistence of microtubule growth.

Understanding kinesin-5's role in microtubule growth should provide a better understanding of its role in stabilizing and growing the mitotic spindle during .

The is a scaffold that ensures duplicated chromosomes are properly segregated during each round of cell division. The final result is two completely new cells containing identical genetic material. Understanding how the scaffold is formed is important for understanding cell division and this scaffold formation is also a potential target for inhibiting cell division.

"Cancer cells are the fastest growing cells in a cell population," Hancock said. "They are the ones that most need to be able to break down and reassemble their microtubule network."

The ability to terminate could one day lead to new approaches in treatment.

The researchers hope to expand their work to investigate how kinesin-5 influences microtubule dynamics in dividing and the role it plays in properly segregating in cell division.

Explore further: Team probes physical forces involved in creating the mitotic spindle

Related Stories

Experiments show hypothesis of microtubule steering accurate

January 23, 2014

Tiny protein motors in cells can steer microtubules in the right direction through branching nerve cell structures, according to Penn State researchers who used laboratory experiments to test a model of how these cellular ...

Decoding cell division's mysterious spindle matrix

September 17, 2015

Every high school biology class learns about the tiny cells that comprise our bodies, as well as about many of the diverse actions that they perform. One of these actions is called mitosis, the series of steps through which ...

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.