Team probes physical forces involved in creating the mitotic spindle

October 2, 2015, Rockefeller University
Researchers probe the physical forces involved in creating the mitotic spindle
During cell division, the mitotic spindle divides up duplicate DNA for the two future daughter cells. The researchers found that the motor protein kinesin-5 (green) helps prepare the spindle by organizing its filaments, or microtubules, (red) by pushing them or acting as a brake. Credit: The Laboratory of Chemistry and Cell Biology

Many millions of times per day, football-shaped structures called mitotic spindles form within the body's cells as they prepare to divide. The process is routine but mysterious, as the micro-mechanics involved are not yet well understood.

In research published October 1 in Developmental Cell, scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.

"We know most of the proteins involved and have a pretty good handle on the biology and genetics," says co-first author Scott Forth, a postdoc in the Laboratory of Chemistry and Cell Biology, led by Tarun Kapoor, who is the Pels Family Professor. "But we don't yet know much about the mechanical side of things, and cell division is a very mechanical process."

The researchers described how a protein called kinesin-5 acts like a kind of molecular motor to help organize the mitotic spindle. Ultimately, their work could have medical implications, since a better understanding of could lead to new cancer therapies to hinder tumor cells' reproduction.

The mitotic spindle includes thousands of , rod-like structures with polarized tips, which biologists term "plus ends" and "minus ends." Because microtubules exist in great numbers alongside each other akin to train tracks, they naturally move, shift, and overlap. Around the spindle's center, they mostly exist in an anti-parallel configuration, in which their plus and minus ends point in opposite directions; towards its poles, the parallel configuration prevails, in which their plus and minus ends point in the same direction.

In order to segregate chromosomes into the two emerging cells, the spindle itself needs a bipolar structure, and so the microtubules must be sorted to align with the long pole-to-pole axis of the spindle. This job is accomplished by kinesin-5, which can bind to two overlapping microtubules, linking them like a bar in the letter H, and directing them to the appropriate locations.

For this study, the researchers took a detailed look at the physical forces generated by the motor protein as it helps organize the .

To do the sorting, kinesin-5 can link two anti-parallel microtubules, pushing them in opposite directions, so their minus ends move away from the spindle's center and toward the spindle's poles. The exerted by kinesin-5 in that process hasn't been previously measured.

By shining a laser light on a microscopic-sized plastic bead attached to a pair of microtubules linked by kinesin-5 molecules, the team tracked their activity and discovered that this force is a function of the microtubule overlap—the longer the overlap, the greater the force. "This is a way by which the cell can tune the amount of force it needs in order to build a nice balanced spindle structure," Forth says.

Kinesin-5 can also link parallel microtubules, and the researchers found that in this case, it behaves differently. Rather than producing a pushing force, it generates a resisting force that can slow down the microtubules' motion. And here again, that force scales up with the length of overlap between the microtubules.

"We believe that kinesin-5 has the ability to coordinate the speed of microtubules and keep them from going too fast or too slow," says Forth, likening the protein to a gear box in a car. "It helps coordinate and govern the speed and location of the microtubules in the spindle." As many kinesin-5 molecules work together directing microtubules, they become the governing force of the spindle formation.

"This work represents an important advance in our efforts to build, from the ground up, the dynamic spindle apparatus out of purified proteins," says Kapoor, the senior author. "It also helps reveal how nanometer-sized proteins work together to assemble complex cellular structures that are thousands of times larger than themselves."

Explore further: Constant overlap: Scientists identify molecular machinery that maintains important feature of the spindle

More information: Developmental Cell, … 1534-5807(15)00551-1

Related Stories

Decoding cell division's mysterious spindle matrix

September 17, 2015

Every high school biology class learns about the tiny cells that comprise our bodies, as well as about many of the diverse actions that they perform. One of these actions is called mitosis, the series of steps through which ...

Friction harnessed by proteins helps organize cell division

April 16, 2014

( —A football-shaped structure, known as the mitotic spindle, makes cell division possible for many living things. This piece of cellular architecture, responsible for dividing up genetic material, is in constant ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

A key component of cell division comes to light

June 30, 2014

The division of a cell in two requires the assembly of the mitotic spindle, an extremely complex structure, which is the result of the coordinated action of a multitude of proteins and a finely tuned balance of their activities. ...

Recommended for you

Scientists ID another possible threat to orcas: pink salmon

January 19, 2019

Over the years, scientists have identified dams, pollution and vessel noise as causes of the troubling decline of the Pacific Northwest's resident killer whales. Now, they may have found a new and more surprising culprit: ...

Researchers come face to face with huge great white shark

January 18, 2019

Two shark researchers who came face to face with what could be one of the largest great whites ever recorded are using their encounter as an opportunity to push for legislation that would protect sharks in Hawaii.

Why do Hydra end up with just a single head?

January 18, 2019

Often considered immortal, the freshwater Hydra can regenerate any part of its body, a trait discovered by the Geneva naturalist Abraham Trembley nearly 300 years ago. Any fragment of its body containing a few thousands cells ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.