World's most powerful magnet ready to ship

After a decade of design and fabrication, General Atomics is ready to ship the first module of the Central Solenoid, the world's most powerful magnet. It will become a central component of ITER, a machine that replicates ...

New method makes generic polymers luminescent

Researchers from Hokkaido University have successfully developed a new method to give luminescent properties to generic polymers, such as polystyrene and polyethylene. The technique, which was published in the journal Angewandte ...

Searching for heavy new particles with the ATLAS Experiment

Since discovering the Higgs boson in 2012, the ATLAS Collaboration at CERN has been working to understand its properties. One question in particular stands out: why does the Higgs boson have the mass that it does? Experiments ...

A new dimension in the quest to understand dark matter

As its name suggests, dark matter—material which makes up about 85% of the mass in the universe—emits no light, eluding easy detection. Its properties, too, remain fairly obscure.

page 1 from 40

Force

In physics, a force is any influence that causes an object to undergo a change in speed, a change in direction, or a change in shape. In other words, a force is that which can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate, or which can cause a flexible object to deform. Force can also be described by intuitive concepts such as a push or pull. A force has both magnitude and direction, making it a vector quantity. Newton's second law, F=ma, was originally formulated in slightly different, but equivalent terms: the original version states that the net force acting upon an object is equal to the rate at which its momentum changes.

Related concepts to force include: thrust, which increases the velocity of an object; drag, which decreases the velocity of an object; and torque which produces changes in rotational speed of an object. Forces which do not act uniformly on all parts of a body will also cause mechanical stresses, a technical term for influences which cause deformation of matter. While mechanical stress can remain embedded in a solid object, gradually deforming it, mechanical stress in a fluid determines changes in its pressure and volume.

This text uses material from Wikipedia, licensed under CC BY-SA