'Smart windows' have potential to keep heat out and save energy

December 10, 2014, American Chemical Society

Windows allow brilliant natural light to stream into homes and buildings. Along with light comes heat that, in warm weather, we often counter with energy-consuming air conditioning. Now scientists are developing a new kind of "smart window" that can block out heat when the outside temperatures rise. The advance, reported in ACS' journal Industrial & Engineering Chemistry Research, could one day help consumers better conserve energy on hot days and reduce electric bills.

Xuhong Guo, Kaimin Chen, Yanfeng Gao and colleagues explain that researchers are pursuing that can respond to a variety of cues, including electricity, gas, light and . Those that are sensitive to heat are particularly useful for cutting down on energy use—when it gets hot outside, the windows turn an opaque white to block unwanted heat from entering a building while still allowing light to pass. They become transparent again as temperatures drop. But current methods for making these windows use jelly-like materials called hydrogels that swell in the heat, which hurts performance. Guo's and Gao's teams wanted to address this flaw.

Building on previous advances, the researchers made a version of the hydrogels, but in the form of microscopic soft beads suspended in a liquid. They sandwiched the solution between two pieces of glass and tested it using a model house. When they shined a lamp mimicking solar light on the smart window, it turned opaque and kept the inside of the house cool. The microgel, however, didn't swell as much as its predecessor. The researchers conclude that their new microgel is a good candidate for use in future smart windows.

Explore further: Scientists unveil energy-generating window

More information: "Binary Solvent Colloids of Thermosensitive Poly(N-isopropylacrylamide) Microgel for Smart Windows" Ind. Eng. Chem. Res., 2014, 53 (48), pp 18462–18472. DOI: 10.1021/ie502828b

Thermosensitive poly(N-isopropylacrylamide) (PNIPAAm) microgel colloids were prepared by using water and high-boiling alcohol as binary solvent. Their thermosensitive behavior and solar modulation ability were studied by differential scanning calorimetery, ultraviolet–visible–near-infrared spectrophotometery, dynamic light scattering, and rheology. Effects of alcohol content and cross-linker dose on their microstructures and optical properties were investigated. A model house was constructed to test their energy-saving performance in smart windows. It was found that the solar modulation ability of PNIPAAm microgel colloids decreased with increasing N,N′-methylenebis(acrylamide) (BIS) dose or alcohol content. Compared to glycol, glycerol showed better compatibility with PNIPAAm hydrogels, inducing less deterioration of the solar modulation ability. With 0.1 wt % (of NIPA) BIS, when glycerol was added as a cosolvent, the prepared PNIPAAm microgel colloids exhibited spherical morphology, controllable LCST, short response time, suitable viscosity, low freezing point, restrained evaporation rate, and excellent energy-saving performance, which makes them much better candidates for application in smart windows than those using a single solvent.

Related Stories

Scientists unveil energy-generating window

October 24, 2013

Scientists in China said Thursday they had designed a "smart" window that can both save and generate energy, and may ultimately reduce heating and cooling costs for buildings.

New 'smart window' system with unprecedented performance

September 21, 2011

A new "smart" window system has the unprecedented ability to inexpensively change from summer to winter modes, darkening to save air conditioning costs on scorching days and returning to crystal clarity in the winter to capture ...

Recommended for you

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.