Scientists identify key factor that maintains stem cell identity

September 25, 2014
Following inhibition of a key protein, these embryonic stem cells underwent differentiation and lost their pluripotency, the ability to become any cell type. (Nuclei are in green and nuclei expressing pluripotency factors are in blue and red.) Credit: Credit: Raffaella Di Micco, Ph.D.

A protein implicated in several cancers appears to play a pivotal role in keeping stem cells in an immature "pluripotent" state, according to a new study by NYU Langone Medical Center scientists. The study is published online today in Cell Reports.

Stem cells are the perpetual adolescents of the cellular world, uncommitted to any cell fate. In principle, they can be programmed to differentiate into any mature cell type, holding the promise of regenerating tissues and organs. A fuller understanding of their biology, however, is needed.

"Our finding provides a better understanding of the complexity of how the stem cell state is regulated," says Eva M. Hernando-Monge, PhD, associate professor of pathology and a member of the Helen L. and Martin S. Kimmel Center for Stem Cell Biology at NYU Langone Medical Center.

The newly identified stem cell factor is BRD4, a protein associated with several cancers and the target of prospective therapies currently in clinical trials. In 2013, Dr. Hernando-Monge and colleagues found that BRD4 is overexpressed in and helps sustain their proliferation, whereas inhibiting BRD4 greatly slows their growth. The protein appeared to drive cancer in part by keeping cancer cells in a relatively immature, stem cell-like state. Intrigued, Dr. Hernand-Monge wanted to find out what role the protein played in actual .

In the new study, Dr. Hernando-Monge's team inhibited BRD4's activity in mouse and human using BRD4-blocking compounds developed by collaborator Ming-Ming Zhou and colleagues at the Icahn School of Medicine at Mount Sinai. They also used special RNA molecules that block BRD4 gene transcripts, and observed the cells shift out of the stem cell state. As they divided, the cells began to show characteristics of young neurons. Stem cells are thought to maintain a state of quiescence until some signal forces them to divide, producing a differentiated, highly specialized cell.

BRD4 has been known to regulate gene activity by binding to the support structure of DNA, called chromatin, at special switch sites called super-enhancers distributed throughout the genome. These sites are believed to be top-level controllers, orchestrating the distinctive expression patterns of several genes that together determine specific cell types such as nerve or muscle.

"We found that BRD4 occupies the super-enhancer sites of genes that are important for maintaining stem cell identity," says Raffaella Di Micco, PhD, a postdoctoral fellow who conceived the research project with Dr. Hernando-Monge and performed most of the experiments. These genes, including OCT4 and PRDM14, showed steep drops in expression when Dr. Di Micco applied BRD4 inhibitors to stem cells.

"OCT4 also represses neuronal differentiation, so we think that the loss of that repression with BRD4 inhibition is the most likely reason for the induction of neuronal characteristics in the stem cells," says Dr. Di Micco.

OCT4 is also one of the four factors in the standard "OKSM" cocktail used for turning ordinary cells into induced (iPSCs). The new findings suggest that BRD4 enforces stem cell identity from an even higher regulatory level in the cell. "In theory we could replace one or more of those OKSM factors with BRD4, or add it to the cocktail to increase reprogramming efficiency—that's something we're working on now," says Dr. Hernando-Monge.

Conversely, she notes, BRD4 inhibitors could be used to help program cells in the other direction, turning stem cells into baby neurons, for example, which perhaps one day would be used for regenerative therapies.

Explore further: Team reports reliable, highly efficient method for making stem cells

Related Stories

How to tell good stem cells from the bad

September 5, 2014

The promise of embryonic stem cell research has been thwarted by an inability to answer a simple question: How do you know a good stem cell from a bad one?

Why stem cells need to stick with their friends

November 7, 2013

Scientists at University of Copenhagen and University of Edinburgh have identified a core set of functionally relevant factors which regulates embryonic stem cells' ability for self-renewal. A key aspect is the protein Oct4 ...

Recommended for you

Canada conservationist warns of 'cyber poaching'

February 25, 2017

Photographers, poachers and eco-tour operators are in the crosshairs of a Canadian conservationist who warns that tracking tags are being hacked and misused to harass and hunt endangered animals.

How proteins reshape cell membranes

February 24, 2017

Small "bubbles" frequently form on membranes of cells and are taken up into their interior. The process involves EHD proteins - a focus of research by Prof. Oliver Daumke of the MDC. He and his team have now shed light on ...

Neanderthal DNA contributes to human gene expression

February 23, 2017

The last Neanderthal died 40,000 years ago, but much of their genome lives on, in bits and pieces, through modern humans. The impact of Neanderthals' genetic contribution has been uncertain: Do these snippets affect our genome's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.