Fueling aviation with hardwoods

May 8, 2014
Professor Bond is a team member and lead author of of a summary on the use of technology designed to transform lignocellulosic biomass into a jet fuel surrogate via catalytic chemistry. Credit: Syracuse University

A key challenge in the biofuels landscape is to get more advanced biofuels—fuels other than corn ethanol and vegetable oil-based biodiesel—into the transportation pool. Utilization of advanced biofuels is stipulated by the Energy Independence and Security Act; however, current production levels lag behind proposed targets. Additionally, certain transportation sectors, such as aviation, are likely to continue to require liquid hydrocarbon fuels in the long term even as light duty transportation shifts to alternative power sources.

A multi-university team lead by George Huber, Professor of Chemical and Biological Engineering at the University of Wisconsin-Madison, has addressed both challenges through the concerted development of technology designed to transform lignocellulosic biomass into a jet fuel surrogate via catalytic chemistry. This promising approach highlights the versatility of lignocellulose as a feedstock and was recently summarized in the journal Energy & Environmental Science by team member and lead author Jesse Q. Bond, Syracuse University Assistant Professor of Biomedical and Chemical Engineering.

Lignocellulosic biomass is an abundant natural resource that includes inedible portions of food crops as well as grasses, trees, and other "woody" biomass. According to the United States Department of Energy, the United States could sustainably produce as much as 1.6 billion tons of per year as an industrial feedstock. Lignocellulose can be processed to yield various transportation fuels and commodity chemicals; however, current strategies are not generally cost-competitive with petroleum. Here, Huber's team presents a comprehensive approach toward streamlining biomass processing for the production of aviation fuels. The proposed technology hinges on efficient production of furfural and levulinic acid from sugars that are commonly present in lignocellulosic biomass. These two compounds are then transformed into a mixture of chemicals that are indistinguishable from the primary components of petroleum-derived aviation fuels.

The technology was demonstrated through a multi-university partnership that brought together expertise in processing, catalyst design, reaction engineering, and process modelling. Economic analysis suggests that, based on the current state of the technology, jet fuel-range hydrocarbons could be produced at a minimum selling price of $4.75 per gallon. The work also identifies primary cost drivers and suggests that increasing efficiency in wastewater treatment and decreasing catalyst costs could reduce that amount to $2.88 per gallon.

"This effort exemplifies the impact of a well-designed collaboration," said Bond. "As individual researchers, we sometimes focus too narrowly on problems that we can resolve using our own existing skills. Biomass refining is complex, and bio-based are difficult targets. Many of the real roadblocks occur at scarcely-studied research intersections. In our view, the only meaningful way to tackle these challenges is through strategic partnerships, and that is precisely what we've done in this program."

Explore further: Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology

More information: Paper: pubs.rsc.org/en/Content/Articl … E43846E#!divAbstract

Related Stories

Recommended for you

World gears up for electric cars despite bumps in road

July 26, 2017

Technological advances mean fossil fuel in cars could be phased out within decades but switching to electric carries its own environmental and economic concerns as more and more countries announce radical plans.

Musk, Zuckerberg duel over artificial intelligence

July 25, 2017

Visionary entrepreneur Elon Musk and Facebook chief Mark Zuckerberg were trading jabs on social media over artificial intelligence this week in a debate that has turned personal between the two technology luminaries.

Adobe bidding Flash farewell in 2020

July 25, 2017

Adobe on Tuesday said its Flash software that served up video and online games for decades will be killed off over the next three years.

Microsoft Paint brushed aside

July 24, 2017

Microsoft on Monday announced the end of days for its pioneering Paint application as it focuses on software for 3-D drawing.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.