High-pressure cryocooler prepares proteins for X-ray crystallography

April 2, 2014 by Anne Ju
High-pressure cryocooler is local company's new product
The high-pressure cryocooler is prepared for shipment oversea by ADC Inc.

A technology developed by Cornell scientists that prepares proteins for X-ray crystallography has made its way into the world marketplace: ADC Inc., a maker of scientific instruments located just outside Ithaca, has licensed the high-pressure cryocooler, called HPC-201, and has just fulfilled its first order to a research center in Japan.

The licensing agreement is ADC's first with Cornell. Company president Alex Deyhim says the product is garnering interest from potential buyers, and he's thrilled to showcase the "amazing work" of Cornell scientists.

"There is a large percentage of technologies that Cornell is developing and filing patents on, and this is a perfect example of one that can create some sales and create jobs in upstate New York," Deyhim said. "The technology was developed, designed and built here, 10 minutes from Cornell, and we just shipped a unit across the world."

The science behind HPC-201 was developed in the lab of Sol Gruner, the John L. Wetherill Professor of Physics, who first became interested in high-pressure cryocooling of proteins in about 2002. Since then, he and a steady stream of graduate students and postdoctoral associates (most recently former MacCHESS (Macromolecular diffraction facility at Cornell High Energy Synchrotron Source) scientist Chae Un Kim), began developing the technology that would earn a patent through the Cornell Center for Technology, Enterprise and Commercialization (CCTEC) in 2011.

Protein crystallography, which reveals atomic structures of protein crystals using diffracted X-ray beams, is a tricky business. The crystals are delicate; to withstand X-rays, they must be flash-frozen, typically with the addition of cryoprotectants to preserve them. Preparing samples and finding the correct cryoprotectant for each crystal can risk sample damage and months of work.

Attacking this problem, Gruner's lab developed a high-pressure cryocooling machine that freezes proteins without the need for cryoprotectants such as glycerol. Crystal samples are picked up using a tiny fiber loop, called a cryoloop, that is mounted on the end of a stainless steel wire. A high-pressure oil pump provides helium gas to the samples, and external controls allow the samples to be pressurized to 2000 times , then cooled in a liquid nitrogen bath to a temperature of 77 K (-320 Fahrenheit). Once pressure is released, the samples can be removed from the machine and handled as long as they are kept cold, which is a normal practice for protein crystallographers.

Gruner's group has published several scientific papers on the cryocooling technique and other scientists have confirmed their results. Since Gruner's research is supported in part by the National Institutes of Health via MacCHESS, they became interested in bringing the technology to crystallographers everywhere, and it made sense to try to license it.

ADC sought to license the , and with the help of CCTEC in the commercialization process, ADC engineers designed the version of HPC-201 that is now being sold for about $100,000.

ADC's first buyer of HPC-201 was the Ibaraki Quantum Beam Research Center, a neutron facility at Ibaraki University, Japan.

Explore further: Scientists study protein dynamical transitions

Related Stories

Scientists study protein dynamical transitions

December 15, 2011

(PhysOrg.com) -- Central to life and all cellular functions, proteins are complex structures that are anything but static, though often illustrated as two-dimensional snapshots in time.

Data-mining for crystal 'gold' at SLAC's X-ray laser

March 17, 2014

A new tool for analyzing mountains of data from SLAC's Linac Coherent Lightsource (LCLS) X-ray laser can produce high-quality images of important proteins using fewer samples. Scientists hope to use it to  reveal the structures ...

New tool puts LCLS X-ray crystallography on a diet

October 30, 2012

A tiny device invented at SLAC National Accelerator Laboratory will make it much easier for scientists to determine the structures of important, delicate proteins by greatly reducing the amount of protein needed for study.

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.