Scientists study protein dynamical transitions

December 15, 2011, Cornell University

( -- Central to life and all cellular functions, proteins are complex structures that are anything but static, though often illustrated as two-dimensional snapshots in time.

Cornell scientists, using the Cornell High Energy Synchrotron Source (CHESS), have gained new insight into the underlying mechanisms of how protein structures change at low temperatures. Their paper, whose first author is CHESS staff scientist Chae Un Kim, was published online Dec. 12 in . Kim's co-authors are Mark Tate, senior research associate in the Laboratory of Atomics and ; and Sol Gruner, professor of physics and CHESS director.

Proteins fluctuate in biological functions ranging from enzymatic catalysis to interactions with other molecules, including DNA. When they are cooled, the fluctuations dampen and eventually stop, typically between -70 and -30 degrees Celsius (-94 to -22 Fahrenheit); this is called a protein dynamical transition. The underlying physical origin of this transition had been poorly understood in the past, although water was thought to be involved.

In their experiments, the researchers observed such a transition at -160 degrees Celsius (-256 Fahrenheit) -- a much lower temperature -- in a protein crystal when cryogenically cooled water confined in the crystal underwent unusual .

The protein crystal samples were treated by the researchers' own high-pressure cryo-cooling method. The samples were frozen to liquid nitrogen temperatures (-196 C, -320 F) in pressurized to 2,000 atmospheres. Previously, they had shown this method induces an unusual, high-density amorphous state of water, and, upon warming, it transforms to low-density amorphous ice.

The protein dynamical transition was then probed at CHESS by temperature-controlled X-ray , which is typically used to measure the distribution of fluctuation states of a protein. The researchers observed that the fluctuation states suddenly increased as the water underwent the high-density to low-density transition.

The change in the state of water gave the proteins freedom to fluctuate and wiggle. This suggested that the protein dynamical transition was enabled by motional freedom provided by the surrounding water.

In the past, similar studies had been hampered by spontaneous crystallization of water into ice. The researchers' novel high-pressure method bypasses this problem to allow probing of protein dynamics and the relationship to the phase behavior of water at cryogenic temperatures. The results provide evidence that the physical origin of a protein dynamical transition is driven by water fluctuations, and they also provide insights into the unusual physical properties of supercooled .

Explore further: Water can flow below -130 C

Related Stories

Water can flow below -130 C

June 28, 2011

When water is cooled below zero degrees, it usually crystallizes directly into ice. Ove Andersson, a physicist at Umea University, has now managed to produce sluggishly flowing water at 130 degree below zero under high pressure ...

Revealing water's secrets

August 1, 2011

We drink it, swim in it, and our bodies are largely made of it. But as ubiquitous as water is, there is much that science still doesn't understand about this life-sustaining substance.

Sneaking up on the glassy transition of water

September 26, 2011

Rapid cooling of ordinary water or compression of ordinary ice: either of these can transform normal H2O into an exotic substance that resembles glass in its transparency, brittleness, hardness, and luster. Unlike everyday ...

New observations on properties of water

December 13, 2006

Experimental studies conducted by Ph.D. Anatoli Bogdan at the University of Helsinki, Finland, have received broad interest in the scientific world, as the results might have applications even in the cryopreservation of cells ...

Recommended for you

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

Hot weather is bad news for bird sperm

January 19, 2018

A new study led by Macquarie University and spanning Sydney and Oslo has shown that exposure to extreme temperatures, such as those experienced during heatwave conditions, significantly reduces sperm quality in zebra finches, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.