Researchers 'fish new pond' for antibiotics

October 13, 2013

Researchers at McMaster University are addressing the crisis in drug resistance with a novel approach to find new antibiotics.

"We have developed technology to find using laboratory conditions that mimic those of infection in the human body," said Eric Brown, professor in the Department of Biochemistry and Biomedical Sciences.

He is the lead author of the paper published in the online edition of Nature Chemical Biology today. Brown is also a member of the Michael G. DeGroote Institute for Infectious Disease Research (IIDR).

The findings report on the discovery of chemical compounds that block the ability of to make vitamins and , processes that are emerging as Achilles' heels for bacteria that infect the human body.

"The approach belies conventional thinking in antibiotic research and development, where researchers typically look for chemicals that block growth in the laboratory under nutrient-rich conditions, where vitamins and amino acids are plentiful," said Brown. "But in the these substances are in surprisingly short supply and the bacteria are forced to make these and other building blocks from scratch."

Brown's research group targeted these processes looking for chemicals that blocked the growth of bacteria under nutrient-limited conditions.

"We threw away chemicals that blocked growth in conventional nutrient-rich conditions and focused instead on those that were only active in nutrient-poor conditions," he said.

"We're taking fresh aim at bacterial vitamin and amino acid production and finding completely novel antibacterial compounds."

The approach and the new leads discovered by Brown's lab have potential to provide much-needed therapies to address the growing global threat of antibiotic .

"When it comes to this kind of new drug discovery technology, Brown's group are fishing in a new pond," said professor Gerry Wright, director of the IIDR. "These leads have real prospects as an entirely new kind of antibacterial therapy."

Explore further: A new way to fight antibiotic-resistant bacteria

More information: Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation, DOI: 10.1038/nchembio.1361

Related Stories

Researchers discover a new antibacterial lead

September 27, 2009

(PhysOrg.com) -- Antibiotic resistance has been a significant problem for hospitals and health-care facilities for more than a decade. But despite the need for new treatment options, there have been only two new classes of ...

'Surprising link' leads toward a new antibiotic

May 28, 2009

(PhysOrg.com) -- As the best drugs become increasingly resistant to superbugs, McMaster University researchers have discovered a completely different way of looking for a new antibiotic.

Recommended for you

Sea sponges stay put with anchors that bend but don't break

June 22, 2017

Sea sponges known as Venus' flower baskets remain fixed to the sea floor with nothing more than an array of thin, hair-like anchors made essentially of glass. It's an important job, and new research suggests that it's the ...

Custom-built molecule shows promise as anti-cancer therapy

June 22, 2017

Scientists at the University of Bath funded by Cancer Research UK have custom-built a molecule which stops breast cancer cells from multiplying in laboratory trials, and hope it will eventually lead to a treatment for the ...

How protons move through a fuel cell

June 22, 2017

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ...

New catalyst paves way for carbon neutral fuel

June 21, 2017

Australian scientists have paved the way for carbon neutral fuel with the development of a new efficient catalyst that converts carbon dioxide (CO2) from the air into synthetic natural gas in a 'clean' process using solar ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.