Zinc, proteins, and an essential cellular balancing act

September 30, 2013 by David Tenenbaum

Scientists at the University of Wisconsin-Madison have made a discovery that, if replicated in humans, suggests a shortage of zinc may contribute to diseases like Alzheimer's and Parkinson's, which have been linked to defective proteins clumping together in the brain.

With proteins, shape is everything. The correct shape allows some proteins to ferry atoms or molecules about a cell, others to provide essential cellular scaffolding or identify invading bacteria for attack. When proteins lose their shape due to high temperature or chemical damage, they stop working and can clump together—a hallmark of Parkinson's and Alzheimer's.

The UW researchers have discovered another stress that decreases protein stability and causes clumping: a shortage of , an essential metal nutrient.

Zinc ions play a key role in creating and holding proteins in the correct shape. In a study just published in the online Journal of Biological Chemistry, Colin MacDiarmid and David Eide show that the gene Tsa1 creates "protein chaperones" that prevent clumping of proteins in cells with a zinc shortage. By holding proteins in solution, Tsa1 prevents damage that can otherwise lead to cell death.

For simplicity, the researchers studied the system in yeast—a single-celled fungus. Yeast can adapt to both shortages and excesses of zinc, says MacDiarmid, an associate scientist. "Zinc is an essential nutrient but if there's too much, it's toxic. The issue for the cell is to find enough zinc to grow and support all its functions, while at the same time not accumulating so much that it kills the cell."

Cells that are low in zinc also produce proteins that counter the resulting stress, including one called Tsa1.

The researchers already knew that Tsa1 could reduce the level of harmful oxidants in cells that are short of zinc. Tsa1, MacDiarmid says, "is really a two-part . It can get rid of dangerous reactive oxygen species that damage proteins, but it also has this totally distinct chaperone function that protects proteins from aggregating. We found that the chaperone function was the more important of the two."

"In yeast, if a cell is deficient in zinc, the proteins can mis-fold, and Tsa1 is needed to keep the proteins intact so they can function," says Eide, a professor of nutritional science. "If you don't have zinc, and you don't have Tsa1, the proteins will glom together into big aggregations that are either toxic by themselves, or toxic because the proteins are not doing what they are supposed to do. Either way, you end up killing the cell."

While the medical implications remain to be explored, there are clear similarities between yeast and human cells. "Zinc is needed by all cells, all organisms, it's not just for steel roofs, nails and trashcans," Eide says. "The global extent of is debated, but diets that are high in whole grains and low in meat could lead to deficiency."

If low zinc supply has the same effect on human cells as on yeast, zinc deficiency might contribute to human diseases that are associated with a build-up of "junked" proteins, such as Parkinson's and Alzheimer's. Eide says a similar protective system to Tsa1 also exists in animals, and the research group plans to move ahead by studying that system in human cell culture.

Explore further: A link between zinc transport and diabetes

Related Stories

A link between zinc transport and diabetes

September 24, 2013

Individuals with a mutation in the gene encoding a zinc transporter, SLC30A8 have an elevated risk of developing type 2 diabetes. Insulin granules that are released from pancreatic β cells contain high levels of zinc; however, ...

Lending a helping hand

July 15, 2011

Many proteins, the primary building blocks of life, depend on elements such as copper, zinc and other trace elements to function properly. “Some metal molecules are required as a structural component for proteins, while ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Mike_Massen
1 / 5 (1) Nov 12, 2013
In Australia "WheatBix" by Sanitarium foods has Zinc Gluconate added though most caucasian people's in Australia have a Copper deficiency, visiting Asians have a general Zinc deficiency up to 40%, one wonders why copper gluconate is not added to any foods given the average intake of copper in Australia is only about 250 mcG/Day...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.