Whispering light hears liquids talk: Scientists build first-ever bridge between optomechanics and microfluidics

Whispering light hears liquids talk
This is a false-color SEM (scanning electron micrograph) of the microfluidic optomechanical resonator. Credit: Gaurav Bahl, University of Illinois

Ever been to a whispering gallery—a quiet, circular space underneath an old cathedral dome that captures and amplifies sounds as quiet as a whisper? Researchers at the University of Illinois at Urbana-Champaign are applying similar principles in the development optomechanical sensors that will help unlock vibrational secrets of chemical and biological samples at the nanoscale.

"Optomechanics is an area of research in which extremely minute forces exerted by light (for example: , gradient force, electrostriction) are used to generate and control high-frequency mechanical vibrations of microscale and nanoscale devices," explained Gaurav Bahl, an assistant professor of mechanical science and engineering at Illinois.

In glass microcavities that function as optical whispering galleries, according to Bahl, these miniscule optical forces can be enhanced by many orders-of-magnitude, which enables 'conversations' between light (photons) and vibration (phonons). These devices are of interest to as the strong phonon-photon coupling enables experiments targeting storage (i.e. qubits), quantum-mechanical ground state (i.e. optomechanical cooling), and ultra-sensitive force measurements past the standard .

Researchers developed a hollow optomechanical device made of fused , through which fluids and gases could flow. Employing a unique optomechanical interaction called Brillouin Optomechanics (described previously in Bahl et al, Nature Communications 2:403, 2011; Bahl et al, Nature Physics, vol.8, no.3, 2012), the researchers achieved the optical excitation of mechanical whispering-gallery modes at a phenomenal range of frequencies spanning from 2 MHz to 11,000 MHz.

Whispering light hears liquids talk
This image shows a microfluidic optomechanical capillary resonator with fluid control tubing. Credit: Gaurav Bahl, University of Illinois

"These mechanical vibrations can, in turn, 'talk' to liquids within the hollow device and provide optical readout of the mechanical properties," said Bahl, who is first author of the paper, "Brillouin cavity optomechanics with microfluidic devices," published this week in Nature Communications.

By confining various liquids inside a hollow microfluidic optomechanical (μFOM) resonator, researchers built the first-ever bridge between optomechanics and microfluidics.

"We found that the optomechanical interaction in the μFOM device is dependent on the fluid contained within," Bahl said. "These results are a step towards novel experiments probing optomechanics on non-solid phases of matter. In particular, the high frequency, high quality-factor demonstrated in this work may enable strongly localized, high-sensitivity, optomechanical interaction with chemical and biological samples."

Potential uses for this technology include optomechanical biosensors that can measure various optical and mechanical properties of a single cell, ultra-high-frequency analysis of fluids, and the optical control of fluid flow.

Citation: Whispering light hears liquids talk: Scientists build first-ever bridge between optomechanics and microfluidics (2013, June 7) retrieved 26 April 2024 from https://phys.org/news/2013-06-liquids-scientists-first-ever-bridge-optomechanics.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New platform developed to measure and exploit optomechanical interactions

0 shares

Feedback to editors