Ultrafast laser helps to better understand high-temperature superconductors

May 31, 2012, Lawrence Berkeley National Laboratory
Part of the momentum map of Bi2212 derived from ultrafast laser ARPES shows that after initial excitation by a pump probe, how fast quasiparticles recombine into Cooper pairs greatly depends on their position in momentum space. (Only one of the four corners of the Fermi surface momentum map is shown, as insets in left panels.) Near the central nodes the quasiparticles recombine very slowly. Far from the nodes, they recombine quickly. Credit: Lanzara Group, Lawrence Berkeley National Laboratory and University of California at Berkeley

Superconductivity, in which electric current flows without resistance, promises huge energy savings – from low-voltage electric grids with no transmission losses, superefficient motors and generators, and myriad other schemes. But such everyday applications still lie in the future, because conventional superconductivity in metals can't do the job.

Although they play important roles in science, industry, and medicine, conventional superconductors must be maintained at temperatures a few degrees above absolute zero, which is tricky and expensive. Wider uses will depend on higher-temperature superconductors that can function well above absolute zero. Yet known high-temperature (high-Tc) superconductors are complex materials whose electronic structures, despite decades of work, are still far from clear.

Now a team of scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley, led by Alessandra Lanzara in collaboration with Joseph Orenstein and Dung-Hai Lee of the Lab's Materials Sciences Division (MSD), has used a new and uniquely powerful tool to attack some of the biggest obstacles to understanding the electronic states of – and how they may eventually be put to practical use. The team reports their research using ultrafast laser ARPES (ultrafast angle-resolved photoemission spectroscopy) in the June 1, 2012 issue of the journal Science.

Pairing off the electrons

Cooper pairs of electrons are the hallmark of , forming a sea of correlated charge carriers that barely interact with their crystalline surroundings. The formation of these pairs in conventional superconductors is well described by the Bardeen Cooper Schrieffer (BCS) theory. With high-Tc superconductors, however, the situation is not straightforward.

"The mechanism binding Cooper pairs together in high-Tc superconductors is one of the great mysteries in materials science," says Christopher Smallwood, a member of Lanzara's group and first author of the Science paper. "What we've done with ultrafast laser ARPES is to start with a high-Tc superconductor called Bi2212 and cool it to well below the critical temperature where it becomes superconducting."

The researchers fired an infrared laser pulse at the sample, temporarily cracking some of the Cooper pairs open into their constituent parts, called quasiparticles. As these states decayed, recombining back into Cooper pairs, the researchers used ARPES to measure their changing energy and momentum.

"The relaxation process takes just a few trillionths of a second from start to finish, and in the end, we were able to assemble and watch an extremely slow-motion movie of Cooper-pair formation – which showed that the quasiparticles tend to recombine faster or slower depending both on their momentum and on the intensity of the pump pulse," Smallwood says. "It's an exciting development, because these trends may be directly connected to the mechanism holding Cooper pairs together."

A Cooper pair has less energy than two independent electrons, leaving an energy gap between the sea of Cooper pairs and the usual lowest energy of the charge carriers in the material. Maps of this superconducting gap can be calculated – or, remarkably, they can be drawn directly by the charge carriers themselves.

In an ARPES experiment, the momenta and angles of the electrons that are knocked loose by a sufficiently energetic beam of light are used to map out the material's momentum space on a flat detector screen. The momentum-space map shows the material's band structure, the energy levels accessible to its charge carriers.

Long used to probe the electronic structures of materials, ARPES is usually associated with synchrotron light sources like Berkeley Lab's Advanced Light Source (ALS), which produces extremely bright beams of x-rays. Laser ARPES is much simpler but limited in energy.

"We're stuck with 5.9 electron-volt photon energy and we can't tune it much, like we could at the ALS," Smallwood says. "But by happenstance this energy is great for looking at high-Tc superconductors, and the low photon energy gives us better momentum resolution."

Most high-Tc superconductors, including Bi2212, resemble cuprate ceramics, rich in copper and oxygen. In almost all conventional metal superconductors the superconducting gap is uniform, but in the cuprates it varies greatly. For some momenta the gap is large, but at four special points in momentum space it drops all the way to zero. The existence of such "nodes" in the gap is a distinguishing characteristic of cuprate high-Tc .

Ultrafast lasers open new vistas

"This is where ultrafast laser ARPES, which is only about five years old, really comes into play to give us results not accessible by other means," Smallwood says. "The laser we use is a titanium-sapphire laser that can emit femtosecond-scale pulses."

The same beam pulse that creates the infrared pump pulse is split to form the more energetic ultraviolet probe pulse, by passing part of it through frequency doubling crystals. The time delay between pump and probe can be adjusted with femtosecond precision, using a motorized mirror to change the distance the probe pulse travels before it reaches the sample. The tiny sample can be tilted to any desired angle, which determines what part of the band structure is being examined by ARPES.

In this way the research team discovered the relation between the initial excitation energy, the quasiparticles' position in momentum space, and how quickly the quasiparticles decay. Greater initial excitation energy gives faster recombination into Cooper pairs, but so does crystal momentum far from the nodes. Quasiparticles with momentum that places them near the nodes on the Fermi surface decay very slowly.

When additional ultrafast all-optical techniques, using infrared for both pump and probe pulses, were applied to the same sample, the results were in good agreement with ARPES.

"It's exciting that now we are able to measure these components of recombination distinctly and see what each contributes," says Smallwood. "It gives us a new handle on ways to assess some of the candidate ideas about how Cooper pairs form, such as the suggestion that the energy and momenta of quasiparticles far from a node may resonate with waves of spin density or charge density to form . We've shown the way to measure this and other ideas to see if they play a significant role in the transition to high-temperature superconductivity."

Explore further: Iron-based superconductors exhibit s-wave symmetry

More information: For more on the Lanzara group's measurement of the femtosecond response of nodal quasiparticles in Bi2212 superconductor, see early result by Jeff Graf et al in Nature Physics, published online July 3, 2011 at www.nature.com/nphys/journal/v … /full/nphys2027.html

Related Stories

Iron-based superconductors exhibit s-wave symmetry

May 18, 2012

(Phys.org) -- Condensed-matter physicists the world over are in hot pursuit of a comprehensive understanding of high-temperature superconductivity, not just for its technological benefits but for the clues it holds to strongly ...

Superconductivity's third side unmasked

June 17, 2011

The debate over the mechanism that causes superconductivity in a class of materials called the pnictides has been settled by a research team from Japan and China. Superconductivity was discovered in the pnictides only recently, ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) May 31, 2012
This research is consistent with the "coupled oscillator" or "synchronized oscillators" theory that I have described in other Physorg comments, based on Art Winfree's work in the 1960's.

See particularly the last paragraph of the above report. "[T]he energy and momenta of quasiparticles far from a node may resonate with waves of spin density or charge density to form Cooper pairs." Waves are a type of oscillation...periodic oscillations. Resonance is a linkage or coupling between two sets of periodic oscillations.
not rated yet Jun 01, 2012
Superficially, this result seems odd. At the nodes, which are the low point of activity, the gap is zero, and recombination is slower. At other momenta, being points of higher activity, the gap is large, and the urge to recombine as pairs is greater than it is at the nodes. This is the opposite of what we normally expect in everyday experience. It's usually tougher to yoke two objects together the faster they move.

Unless...the motion or momentum itself is the force that produces the pairs. Hard to think of any other reasonable explanation. This is the essence of Art Winfree's theory of coupled oscillators. It's a theory that is well developed in math and biology (Winfree, Kuramoto, Strogatz, Mirollo), with a 45 year intellectual history. I believe it explains this result. It is also interesting that physicists have not been able to solve this problem in 26 years with anything in their own theoretical toolbox. Time to try a new, but proven, tool.

not rated yet Jun 04, 2012
To complete the picture, consider orbital resonance, such as that between Pluto and Neptune (2:3) or among Jupiter's moons (1:2:4--Ganymede, Europa, Io). The orbital periods are linked. In the above article, such coordination-by-resonance could cause electrons to pair. If so, the pairing would be strongest at the point of maximum activity--visualize them holding on to each other for dear life, so to speak, at the highest speeds.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.