Phase diagram for infinite layer nickel superconductors

NUS physicists have developed a method to induce the transition of a rare-earth nickelate from their native perovskite form to infinite-layer structures. This allowed them to build a complete phase diagram of this nickelate ...

Physicists invent printable superconducting device

Superconducting devices such as SQUIDS (Superconducting Quantum Interferometry Device) can perform ultra-sensitive measurements of magnetic fields. Leiden physicsts invented a method to 3-D-print these and other superconducting ...

Printable two-dimensional superconducting monolayers

Highly crystalline 2-D transition metal dichalcogenide superconductors and their associated (van der Waals) heterostructures provide a rich platform for the investigation of new quantum physics and exotic superconductivity. ...

Connecting two classes of unconventional superconductors

The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics. Different classes of unconventional superconductors share that superconductivity emerges near ...

The discovery of triplet spin superconductivity in diamonds

Diamonds have a firm foothold in our lexicon. Their many properties often serve as superlatives for quality, clarity and hardiness. Aside from the popularity of this rare material in ornamental and decorative use, these precious ...

page 1 from 40


Superconductivity is a phenomenon occurring in certain materials generally at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect). It was discovered by Heike Kamerlingh Onnes in 1911. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealization of "perfect conductivity" in classical physics.

The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, despite these imperfections, drops abruptly to zero when the material is cooled below its "critical temperature". An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source.

Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in pure samples of ferromagnetic metals.

In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. In addition, because the superconducting state persists up to more manageable temperatures, past the economically-important boiling point of liquid nitrogen (77 kelvin), more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered.

See also the history of superconductivity.

This text uses material from Wikipedia, licensed under CC BY-SA