Catching electrons in the act: Science on the attosecond scale

Apr 16, 2010
Long-wavelength laser light approaches an atom (left). The laser pulse ionizes the atom by boosting one of its electrons (center), but before it can escape, the light’s electric field reverses and forces the electron to recombine with the atom (right). The electron’s extra aquired energy is released as an attosecond burst of high-frequency x-rays (relative length of the pulse exaggerated for clarity).

(PhysOrg.com) -- Understanding how to create artificial photosynthesis, or tough, flexible high-temperature superconductors, or better solar cells, or a myriad other advances, will only be possible when we have the ability to image electrons by freezing time within a few quintillionths of a second. A leader in attosecond science tells how it's done.

When lasers that could emit ultrashort pulses of light became available in the 1980s, Steve Leone recalls, they ushered in a new field of “femtochemistry.” A femtosecond is a quadrillionth of a second, 1015 second.

“From then until now, people have mostly studied relative atomic motions or the electronic transitions governed by these motions,” says Leone, a member of Berkeley Lab’s Chemical Sciences Division, a professor of chemistry and physics at UC Berkeley, and Director of the Chemical Dynamics Beamline at the Advanced Light Source. “These include vibrations, rotations, and the like - motions measured in timescales of femtoseconds.”

The fastest motion known between atomic nuclei is about eight femtoseconds, the vibrational period between the two in a hydrogen molecule. Electrons bind, release, and move among the atoms in a molecule or crystal, but almost all of the atom’s mass is in its nucleus, which drags its electrons around with it. So a lot of chemistry can be done by watching atoms move, even when their electrons can’t be seen directly.

But for Leone, femtoseconds don’t do the job. He wants to see electrons moving for themselves.

“Electrons are lighter and quicker and move in a much, much shorter time than nuclei,” Leone says. “Electron dynamics and electron correlation are the problems to be solved if we want to really understand and eventually control chemical processes and , such as high-speed electronics. To get at the electron dynamics directly, we need to work on the attosecond timescale.”

These thoughts motivated the start of the attosecond science program at Berkeley in 2004, a collaborative effort led by Leone and his colleague in UC Berkeley’s Chemistry Department, Daniel Neumark, Director of Berkeley Lab’s Chemical Sciences Division.

While there are more femtoseconds in a single second than there are seconds in 32 million years, attoseconds are a thousand times shorter yet - slices of time so fine that, while they can be counted and measured, they can hardly be imagined. In the time it takes a to make a single, vibratory bounce, its two electrons whiz around the molecule 300 times.

Catching these electrons in the act requires subfemtosecond laser pulses, from hundreds down to just a few attoseconds. How is it possible to create pulses of light so short? The secret lies in the intimate relationships between photons and electrons. Photons give electrons energy; under certain conditions, the electrons can give back that energy and more.

This video is not supported by your browser at this time.
Steve Leone defines “attosecond” in Berkeley Lab’s Video Glossary

Surfing light to make faster light

Imagine a red or near-infrared laser pulse (its long wavelengths are called “optical” wavelengths); the waves of the pulse’s electromagnetic field rise and fall like surf, and as it drives through a medium such as pressurized neon gas, the rising wave lifts electrons out of their orbits around atoms and accelerates them toward freedom.

The intensity of the driver pulse isn’t always sufficient to permanently ionize the gas, however. Often, before the electrons can escape, the wave crests and reverses; the electrons are drawn back and reaccelerate into the atoms, carrying the extra energy they gained from the electromagnetic field.

Upon recombination, the atom emits a burst of higher-frequency (ultraviolet or x-ray) light measured in attoseconds. As electrons continue to recombine, the process repeats with each half wave of the optical cycle, making a sequence of bright, high-frequency attosecond flashes, perfectly synchronized with the optical driver’s wave frequency, carrying them along in the same direction.

This three-step process - electron acceleration away from the atom, acceleration back to the atom, and recombination that emits an attosecond flash - is called high harmonic generation.

“High harmonic generation is one basic and most common way of creating an attosecond laser pulse,” says Leone. “If the pulse from the drive laser is long enough, it’s relatively easy to create trains of attosecond pulses, one after the other. What’s hard is to make an individual attosecond pulse. Only four or five groups in the world have done it.”

Leone’s group, in partnership with Neumark’s, is one of those, and they have achieved individual attosecond pulses in a new way. The most frequently used method for making attosecond pulses depends on filters that select the highest-frequency slice of the harmonic pulse, which rides along with the most energetic half-cycle wave in the carrier pulse envelope. But Leone and Neumark, with their students and postdocs, used a method called ionization gating.

Ionization gating begins with a much more intense optical pulse - one so intense that the front of the pulse envelope knocks electrons right off the atoms in the gas, forming a dense plasma through which the pulse must plow. Not all the gas atoms are ionized, however; recombination of energized electrons and atoms still creates attosecond pulses of x-rays, but there’s a switch-like termination of the pulse train.

The “switch” is a process called phase match gating. The attosecond pulses, produced on the leading edge of the optical pulse, are tunable in x-ray energy by adjusting the phase of the half cycles within the driver pulse envelope. The attosecond pulses need not be locked to the strongest half-cycle in the optical pulse envelope.

Once the train has been terminated, the individual attosecond pulses, along with the original laser beam, continue on to a separate interaction region of the laser set-up, where experiments can be carried out.

A red laser produces attosecond pulses of x-rays by harmonic generation. Optical light and x-rays travel together into the interaction region, then are separated by a mirror and recorded by detectors. Photoelectrons generated by the attosecond pulses in the interaction region are analyzed by a time-of-flight detector (circle). The streaked photoelectron spectrum, shown versus the laser pulse delay time, reveals the duration of the x-ray pulse to be about 430 attoseconds.

Watching what happens in an attosecond

Once the attosecond pulses have entered the interaction region, Leone uses techniques called “carrier-envelope phase scanning” and “optical streaking” to observe what happens. With these he can identify and characterize individual attosecond pulses.

Carrier-envelope phase scanning: When an electron is boosted away from an atom during ionization, the photon that does the boosting consists of an electric field varying in one direction and then another. These fields can both add to and subtract from the electron’s momentum, so depending on when it is born, the photoelectron experiences a different force - sometimes stronger, sometimes weaker. Scanning the gas in the interaction region (whatever gas is the subject of the experiment) allows the timing of the electrons produced by the attosecond bursts to be identified by their extra momentum.

Optical streaking: A subsequent streak spectrogram compares the energy of the attosecond pulse to the energy of the photoelectron, as the two change over time. The streak spectrogram confirms the existence of individual attosecond pulses, measures their length, and determines when a secondary electron is produced.

“We have measured 450 attosecond pulses,” says Leone. “The time is limited by the particular optics used to reflect the x-rays. The method can actually produce much shorter pulses, tunable to various frequencies.”

Someday the method will deliver stability, reliability, and ease of use in the production of attosecond pulses, although at present Leone’s experimental laser system in Building 2 is still finicky. Leone compares it to a “TV set that’s a little temperamental; it works, but you have to have the touch.”

Even with this oversensitive instrument, Leone’s group has done unique scientific experiments on gas-phase samples. Using attosecond x-rays as pump pulses to ionize a thin gas of sulfur hexafluoride (SF6), they follow up with precisely timed probe pulses from the longer-wavelength, femtosecond laser beam, using ionization spectroscopy to see what happens as the molecules “evolve” - that is, as the sulfur compounds fall apart in an ordered routine dictated by nature. Knowing how nature does it could lead to control of such complex processes.

Practically next door to Leone’s lab in Building 2, Robert Kaindl of the Materials Sciences Division also uses an attosecond laser, disentangling electronic correlations in nanoparticles and complex materials. Meanwhile, Leone and Neumark pursue solid state physics at another lab on the UC Berkeley campus, studying such phenomena as excitons (the bound states of negatively charged electrons with positively charged holes). This work is vital to developing better , since excitons are important precursors to the separation of charges in semiconductors for converting sunlight to electrical current.

The science is so promising that other attosecond laser systems are already in the works. In January the W. M. Keck Foundation awarded $1 million to Leone and Neumark to upgrade a campus laboratory for attosecond science. Shortly thereafter the Department of Defense awarded Leone a National Security Science and Engineering Faculty Fellowship amounting to $850,000 per year over five years. “The Keck grant will go for equipment and the DOD award will fund operations, supplementing the generous support from the Department of Energy,” he says.

The ultrafast light sources of the future

Already on the horizon are powerful light sources able to generate ultrabright attosecond pulses of x-rays up to a million times a second, using some combination of linear accelerators, advanced electron injectors, and free electron lasers (FELs).

When he was with Berkeley Lab’s Accelerator and Fusion Research Division, Sasha Zholents (who is now at Argonne’s Advanced Photon Source) devised a laser pulse-slicing scheme using wiggler magnets, now used by the Advanced Light Source to produce x-ray beams. He also pioneered a similar concept to produce attosecond pulses. The Zholents schemes “were the precursors to attosecond hopes for FELs,” Leone says.

High intensity, FEL-produced attosecond pulses, which may be made by such machines as Berkeley Lab’s proposed Next Generation Light Source, will be crucial to using attosecond pulses for both pump pulses and (until now impractical) probe pulses as well. Only in this way will it become possible to create and control the states of matter and chemical processes that theorists can visualize and model with computers.

“There are challenging problems with all the many techniques involved with science,” Leone says. “The strength of my own contributions lies in thinking about new ways to make the measurements and the science to be done with these short pulses.”

Explore further: Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays

More information: References:

* “Time-resolved spectroscopy of attosecond quantum dynamics,” by Thomas Pfeifer, Mark J. Abel, Phillip M. Nagel, Aurélie Jullien, Zhi-Heng Loh, M. Justine Bell, Daniel M. Neumark, and Stephen R. Leone, appears in Chemical Physics Letters and is available online to subscribers.
* “Isolated attosecond pulses from ionization gating of high-harmonic emission,” by Mark J. Abel, Thomas Pfeifer, Phillip M. Nagel, Willem Boutu, M. Justine Bell, Colby P. Steiner, Daniel M. Neumark, and Stephen R. Leone, appears in Chemical Physics and is available online to subscribers.

Related Stories

K-State attosecond research could aid Homeland Security

May 21, 2007

Building a new laser-like X-ray source powerful and quick enough to capture fast motion in the atomic world is a big job. But Zenghu Chang, Kansas State University professor of physics, and his team of physicists and engineers ...

Light oscillations become visible

Aug 28, 2004

The human eye can detect changes in the intensity of light, not however the wavelength because light oscillates too fast (approximately 1000 trillion times per second). An international collaboration led by Ferenc Krausz an ...

Laser pulses control single electrons in complex molecules

Sep 01, 2009

Predatory fish are well aware of the problem: In a swarm of small fish it is hard to isolate prey. A similar situation can be found in the microcosm of atoms and molecules, whose behavior is influenced by "swarms" of electrons. ...

Light controls matter, matter controls x-rays

Mar 24, 2010

Like playing a game of scissors-paper-rock, a team of scientists led by Thornton E. (Ernie) Glover of Lawrence Berkeley National Laboratory's Advanced Light Source (ALS), Linda Young of Argonne National Laboratory, ...

Recommended for you

User comments : 9

Adjust slider to filter visible comments by rank

Display comments: newest first

DaveGee
3.7 / 5 (3) Apr 16, 2010
"The Keck grant will go for equipment and the DOD award will fund operations, supplementing the generous support from the Department of Energy,�

The numbers from Keck & the DOD award round up to what $5m dollars... If I'm not mistaken thats just about what Letterman makes in 2 months. Just about a weeks income from Oprah. Does anyone not find this more than a little odd? Then again perhaps this isn't the audience I should be preaching to... :)
Skeptic_Heretic
not rated yet Apr 16, 2010
DaveGee,

You're forgetting the fact that anything worthy of the award is also paid for and patented for the researcher. The patent is where the money comes in.

Hence why I refuse to sign an indenture declaration when I do contract work.
DaveGee
5 / 5 (2) Apr 16, 2010
Oh I don't disagree and as you indicate.. some do personally benefit from discoveries however a great many more see the 'institution' they work for reap much of the reward. Now I see both sides to that particular argument but that's getting away from my real point... Which was simply a commentary on just how little is being invested in potentially beneficial research when compared to other 'professions'.

And before someone calls me out...

I'm certainly not suggesting any mass redistribution of wealth! I'm about as 'fiscally right' as any reasonable person can get. I'm just saying that lopping a few billion from the 'general budget' and redirecting it toward energy research wouldn't be such a tragic action.
sender
not rated yet Apr 16, 2010
wasnt there an article month or two ago about quantum photoelectric effects which allowed for greater polariton control? i would imagine that to be a much more feasible method to sub attosecond pulse generation
shockr
not rated yet Apr 16, 2010
Nice one Physorg, bloody good article. Lots of details in there.
PinkElephant
not rated yet Apr 16, 2010
Nice one Physorg, bloody good article. Lots of details in there.
Er... Would the phrase "Provided by Lawrence Berkeley National Laboratory" mean anything to you?
jgelt
not rated yet Apr 17, 2010
Nice article with more detail than speculation.
Nutritious and delicious.
Skeptic_Heretic
5 / 5 (1) Apr 17, 2010
And before someone calls me out...

I'm certainly not suggesting any mass redistribution of wealth! I'm about as 'fiscally right' as any reasonable person can get. I'm just saying that lopping a few billion from the 'general budget' and redirecting it toward energy research wouldn't be such a tragic action.

Well you'll get no argument here. I'm a technocrat. We can solve society's problems with science, unfortunately there's no profit in it.
Caution
not rated yet Apr 26, 2010
10 to the negative 15th, no?