Key piece of puzzle sheds light on function of ribosomes

Jan 13, 2010

(PhysOrg.com) -- When ribosomes produce protein in all living cells, they do so through a chemical reaction that happens so fast that scientists have been puzzled. Using large quantum mechanical calculations of the reaction center of the ribosome, researchers at Uppsala University in Sweden can now provide the first detailed picture of the reaction. The findings are published in the Web edition of Proceedings of the National Academy of Sciences, PNAS.

It was previously known how the chemical reaction goes about adding to the growing protein. Both and x-ray crystallographic experiments have identified a hydrogen bonding network that appears to be the main explanation for the high speed of the reaction. What is especially remarkable is the presence of a couple of "trapped" water molecules seem to be the only parts of the ribosome that are in contact with the reacting chemical groups.

Doctoral candidate Göran Wallin and Professor Johan Ĺqvist at the Department of Cell and Molecular Biology at Uppsala University have carried out large-scale calculations of the ribosome reaction center, and this has enabled them to monitor the changes electronic structure during the reaction. With about a thousand quantum mechanical optimizations, they have succeeded in establishing exactly what the highest point of the energy surface looks like, the point that determines the speed of the reaction.

"Our calculations provide a detailed picture of the reaction and show that the two play a central role in ribosome catalysis. One of the molecules participates directly in the reaction by 'shuffling' protons around, while the other one helps increase the speed of the reaction," explains Johan Ĺqvist.

The findings surprisingly show that it is just a few components in the ribosome's reaction center that induce the catalytic effect, whereas the surrounding structure mainly holds them in place.

"An exciting question for future research is whether these components are a vestige of a primordial and much simpler ," says Johan Ĺqvist.

Explore further: New computer model sets new precedent in drug discovery

More information: www.pnas.org/content/early/201… /0914192107.abstract

Related Stories

Polymerization From the Individual Molecule's Point of View

Dec 18, 2007

Plastics are becoming more and more important and are an indispensable part of modern life. Scientists are thus interested in clearing up the details of polymerization processes, in which individual molecular building blocks ...

Biologists probe the machinery of cellular protein factories

Sep 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Emory chemists reveal challenge to reaction theory

Dec 17, 2004

For nearly 75 years, transition-state theory has guided chemists in how they view the way chemical reactions proceed. Recent research by Emory University chemists is challenging the long-held theory, showing that in some ...

Recommended for you

New computer model sets new precedent in drug discovery

Nov 18, 2014

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects - a challenge that has ...

Finding new ways to make drugs

Nov 18, 2014

Chemists have developed a revolutionary new way to manufacture natural chemicals and used it to assemble a scarce anti-inflammatory drug with potential to treat cancer and malaria.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.