'Hot' graphene reveals migration of carbon atoms

The migration of carbon atoms on the surface of the nanomaterial graphene was recently measured for the first time. Although the atoms move too swiftly to be directly observed with an electron microscope, their effect on ...

Linker histone's surprising partnership with single-stranded DNA

To keep order in the tight quarters of the cell nucleus, our DNA is neatly clamped in place around a central disk by H1 linker histone, which helps shepherd DNA into the tidy chromatin fibers that comprise chromosomes. Linker ...

Scientists use quantum computers to simulate quantum materials

Quantum computers promise to revolutionize science by enabling computations that were once thought impossible. But for quantum computers to become an everyday reality, there is a long way to go with many challenging tests ...

Planets of binary stars as possible homes for alien life

Nearly half of sun-size stars are binary. According to University of Copenhagen research, planetary systems around binary stars may be very different from those around single stars. This points to new targets in the search ...

Simulations predict mysterious biological processes of the cell

The research group of Lucie Delemotte, Associate Professor in computational biophysics at the KTH Royal Institute of Technology in Stockholm, Sweden, is focusing on understanding the function of ion channels in cell membranes. ...

page 1 from 40

Computer simulation

A computer simulation, a computer model or a computational model is a computer program, or network of computers, that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modeling of many natural systems in physics (computational physics), chemistry and biology, human systems in economics, psychology, and social science and in the process of engineering new technology, to gain insight into the operation of those systems, or to observe their behavior.

Computer simulations vary from computer programs that run a few minutes, to network-based groups of computers running for hours, to ongoing simulations that run for days. The scale of events being simulated by computer simulations has far exceeded anything possible (or perhaps even imaginable) using the traditional paper-and-pencil mathematical modeling: over 10 years ago, a desert-battle simulation, of one force invading another, involved the modeling of 66,239 tanks, trucks and other vehicles on simulated terrain around Kuwait, using multiple supercomputers in the DoD High Performance Computer Modernization Program; a 1-billion-atom model of material deformation (2002); a 2.64-million-atom model of the complex maker of protein in all organisms, a ribosome, in 2005; and the Blue Brain project at EPFL (Switzerland), began in May 2005, to create the first computer simulation of the entire human brain, right down to the molecular level.

This text uses material from Wikipedia, licensed under CC BY-SA