Installed cost of solar photovoltaic systems in the US fell in 2008

Oct 21, 2009
solar power

Researchers at the Department of Energy's Lawrence Berkeley National Laboratory released a new study on the installed costs of solar photovoltaic (PV) power systems in the U.S., showing that the average cost of these systems declined by more than 30 percent from 1998 to 2008. Within the last year of this period, costs fell by more than 4 percent.

The number of solar PV systems in the U.S. has been growing at a rapid rate in recent years, as governments at the national, state, and local levels have offered various incentives to expand the solar market. With this growth comes a greater need to track and understand trends in the installed cost of PV.

"A goal of government incentive programs is to help drive the cost of PV systems lower. One purpose of this study is to provide reliable information about the costs of installed systems over time," says report co-author Ryan Wiser.

According to the report, the most recent decline in costs is primarily the result of a decrease in PV module costs. "The reduction in installed costs from 2007 to 2008 marks an important departure from the trend of the preceding three years, during which costs remained flat as rapidly expanding U.S. and global PV markets put upward pressure on both module prices and non-module costs. This dynamic began to shift in 2008, as expanded manufacturing capacity in the , in combination with the , led to a decline in wholesale module prices," states the report, which was written by Wiser, Galen Barbose, Carla Peterman, and Naim Darghouth of Berkeley Lab's Environmental Energy Technologies Division.

In contrast, cost reductions from 1998 through 2007 were largely due to a decline in non-module costs, such as the cost of labor, marketing, overhead, inverters, and the balance of systems.

The study—the second in an ongoing series that tracks the installed cost of PV—examined 52,000 grid-connected PV systems installed between 1998 and 2008 in 16 states. It found that average installed costs, in terms of real 2008 dollars, declined from $10.80 per watt (W) in 1998 to $7.50/W in 2008, equivalent to an average annual reduction of $0.30/W, or 3.6 percent per year in real dollars.

Costs Differ by Region and Type of System

Other information about differences in costs by region and by installation type emerged from the study. The cost reduction over time was largest for smaller PV systems, such as those used to power individual households. Also, installed costs show significant economies of scale—small residential PV systems completed in 2008 that were less than 2 kilowatts (kW) in size averaged $9.20/W, while large commercial systems in the range of 500 to 750 kW averaged $6.50/W.

Installed costs were also found to vary widely across states. Among systems completed in 2008 and less than 10 kW in size, average costs range from a low of $7.30/W in Arizona, followed by California, which had average installed costs of $8.20/W, to a high of $9.90/W in Pennsylvania and Ohio. Based on these data, and on installed cost data from the sizable German and Japanese PV markets, the authors suggest that PV costs can be driven lower through large-scale deployment programs.

The study also found that the new construction market offers cost advantages for residential PV systems. Among small residential PV systems in California completed in 2008, those systems installed in residential new construction cost $0.80/W less than comparably-sized systems installed in rooftop retrofit applications.

Cash Incentives Declined

The study also found that the average size of direct cash incentives provided by state and local PV incentive programs declined over the 1998-2008 study period. Other sources of incentives, however, such as federal investment tax credits (ITCs), have become more significant. For commercial PV systems, the average combined after-tax value of federal and state ITCs, plus direct cash incentives provided by state and local incentive programs, was $4.00/W in 2008, down slightly from its peak in 2006 but still a near-record-high. Total after-tax incentives for residential systems, on the other hand, were at an historic low in 2008, averaging $2.90/W, their lowest level within the 11-year study period.

The drop in total after-tax incentives for both commercial and residential PV from 2007 to 2008 more than offset the cost reduction over this period, leading to a slight rise in the net installed cost, or the installed cost facing a customer after receipt of financial incentives. For residential PV, net installed costs in 2008 averaged $5.40/W, up 1% from the previous year. Net installed costs for commercial PV averaged $4.20/W, a 5% rise from 2007.

More information: The report "Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998 - 2008," by Ryan Wiser, Galen Barbose, Carla Peterman, and Naim Darghouth may be downloaded from eetd.lbl.gov/ea/emp/re-pubs.html .

Source: Lawrence Berkeley National Laboratory

Explore further: Qi wireless charging standard offers more design freedom

add to favorites email to friend print save as pdf

Related Stories

Study finds cloudy outlook for solar panels

Feb 21, 2008

Despite increasing popular support for solar photovoltaic panels in the United States, their costs far outweigh the benefits, according to a new analysis by Severin Borenstein, a professor at the University of California, ...

Cost Of Photovoltaic Concentrators Falling Fast

Jul 19, 2005

Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject.

Solar energy has potential to dominate by 2030

Nov 16, 2005

Professor Andrew Blakers from The Centre for Sustainable Energy Systems at the Australian National University will today report to the Greenhouse 2000 Conference in Melbourne that photovoltaic (PV) solar energy ...

More efficient devices on solar cells due to energy matching

Dec 07, 2006

Many wireless devices currently work on solar energy (photovoltaic = PV). Often the choice for PV cells seems merely to be based on the green image. Yet this technology can be used far more effectively if the elements from ...

Recommended for you

Qi wireless charging standard offers more design freedom

7 hours ago

Wireless charging is getting a new technology treatment which offers more design freedom. The Wireless Power Consortium's advance in its Qi wireless charging standard means that phones and chargers will no ...

'Wetting' a battery's appetite for renewable energy storage

11 hours ago

Sun, wind and other renewable energy sources could make up a larger portion of the electricity America consumes if better batteries could be built to store the intermittent energy for cloudy, windless days. Now a new material ...

New system to optimize public lighting power consumption

12 hours ago

In order to meet the efficiency requirements of the latest public lighting regulations, researchers from the School of Industrial Engineers of Universidad Politécnica de Madrid (UPM), in collaboration with ...

Many tongues, one voice, one common ambition

Jul 31, 2014

There is much need to develop energy efficient solutions for residential buildings in Europe. The EU-funded project, MeeFS, due to be completed by the end of 2015, is developing an innovative multifunctional and energy efficient ...

Panasonic, Tesla to build big US battery plant

Jul 31, 2014

(AP)—American electric car maker Tesla Motors Inc. is teaming up with Japanese electronics company Panasonic Corp. to build a battery manufacturing plant in the U.S. expected to create 6,500 jobs.

User comments : 0