Scientists pave way for new generation of superbug drugs

February 22, 2016
Escherichia coli. Credit: Rocky Mountain Laboratories, NIAID, NIH

Scientists at the University of East Anglia are getting closer to solving the problem of antibiotic resistance. New research published today in the journal Nature reveals the mechanism by which drug-resistant bacterial cells maintain a defensive barrier.

The findings pave the way for a new wave of drugs that kill superbugs by bringing down their defensive walls rather than attacking the itself. It means that in future, bacteria may not develop drug-resistance at all.

Unravelling this mechanism could also help scientists understand more about human cell dysfunctions linked to disorders such as diabetes, Parkinson's and other neurodegenerative diseases.

The team, supported by the Wellcome Trust, used Diamond Light Source, one of the world's most advanced scientific machines, to investigate a class of bacteria called 'Gram-negative bacteria'.

Diamond produces intense light 10 billion times brighter than the sun, allowing scientists to explore almost any material in atomic detail.

Gram-negative bacteria is particularly resistant to antibiotics because of its cells' impermeable lipid-based outer membrane.

This outer membrane acts as a defensive barrier against attacks from the human immune system and antibiotic drugs. It allows the to survive, but removing this barrier causes the bacteria to become more vulnerable and die.

The research team previously found an 'Achilles heel' in this defensive barrier. But exactly how this defensive is built and maintained - the 'assembly machinery' - was unknown until now.

Lead researcher Prof Changjiang Dong, from UEA's Norwich Medical School, said: "Bacterial multi-drug resistance, also known as , is a global health challenge. Many current antibiotics are becoming useless, causing hundreds of thousands of deaths each year. The number of super-bugs is increasing at an unexpected rate.

"Gram-negative bacteria is one of the most difficult ones to control because it is so resistant to antibiotics.

"All Gram-negative bacteria have a defensive cell wall. Beta-barrel proteins form the gates of the cell wall for importing nutrition and secreting important biological molecules.

"The beta-barrel assembly machinery (BAM) is responsible for building the gates (beta-barrel proteins) in the cell wall.

"Stopping the beta-barrel assembly machine from building the gates in the cell wall cause the bacteria to die."

Scientists studied the E.coli, in which the beta-barrel assembly machinery contains five subunits - known as BamA, BamB, BamC, BamD and BamE. They wanted to know exactly how these subunits work together to insert the outer membrane proteins into the outer membrane or cell wall.

Prof Dong said: "Our research shows the whole beta-barrel assembly machinery structures in two states - the starting and finishing states. We found that the five subunits form a ring structure and work together to perform outer membrane protein insertion using a novel rotation and insertion mechanism.

"Our work is the first to show the entire BAM complex. It paves the way for developing new-generation drugs.

"The beta-barrel assembly machinery is absolutely essential for Gram-negative bacteria to survive. The subunit BamA is located in the outer membrane and exposed to the outer side of the bacteria, which provides a great target for new drugs.

"In Human mitochondria, a similar complex called sorting and assembly machinery complex (SAM) is responsible for building the outer in the outer membrane of mitochondria.

"Dysfunction of mitochondria proteins are linked to disorders such as diabetes, Parkinsons and other neurodegenerative diseases, so we hope that this work may also help us to better understand these human diseases too."

Explore further: Team discovers Achilles' heel in antibiotic-resistant bacteria

More information: 'Structural basis of outer membrane protein insertion by the BAM complex' is published in the journal Nature on February 22, 2016. DOI: 10.1038/nature17199

Related Stories

Lipids support protein machinery

November 5, 2015

In the membranes of mitochondria, the power stations of the cell, are many different embedded proteins. These proteins perform key functions for the mitochondria. A team led by the biochemist Dr. Thomas Becker from the University ...

Finding E. coli’s Achilles heel

November 10, 2011

( -- Thanks to the work of a Simon Fraser University researcher and two of his students, science is closer to finding a new way of combatting infections caused by Escherichia coli (E. coli) and other related bacteria.

All change for bacterial outer membrane proteins

June 10, 2015

The discovery of how a group of bacteria rapidly adapts to changing growth conditions could have implications for future antibiotic development, according to research at the University of Oxford and the University of York.

Protein team produces molecular barrels

August 5, 2013

Research groups headed by Prof. Dr. Nikolaus Pfanner, Dr. Nils Wiedemann, and Dr. Thomas Becker from the University of Freiburg and their colleagues have demonstrated how molecular protein barrels form in the outer membrane ...

Recommended for you

How a fungus inhibits the immune system of plants

October 27, 2016

A newly discovered protein from a fungus is able to suppress the innate immune system of plants. This has been reported by research teams from Cologne and Würzburg in the journal Nature Communications.

'Neighbor maps' reveal the genome's 3-D shape

October 27, 2016

A group coordinated by SISSA Trieste has built a 3-D computer model of the human genome. The shape of DNA (and its sequence) affects biological processes and is crucial for understanding its function. The study has provided ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.