Researchers identify two proteins important for the demethylation of DNA

January 12, 2016
DNA
DNA double helix. Credit: public domain

Scientists at the Institute of Molecular Biology (IMB) in Mainz have identified a missing piece of the puzzle in understanding how epigenetic marks are removed from DNA. The research on DNA demethylation sheds new light on a fundamental process that is important in development and diseases such as cancer.Epigenetics is defined by heritable changes in gene expression that do not derive from changes in the DNA sequence itself.

Epigenetic processes play a central role in a broad spectrum of diseases, such as cardiovascular disease, neurodegenerative disorders and cancer. One of the most prominent epigenetic processes is DNA methylation, where one of the four bases of animal DNA is marked by a . DNA methylation typically reduces the activity of surrounding genes.

A lot is known about how methyl marks are put onto the DNA, but how they are removed – a process called DNA demethylation – and, thus, how genes are reactivated is still not well understood. In their recent study, published in Nature Structural and Molecular Biology, IMB scientists have identified two proteins, Neil1 and Neil2 that are important for the demethylation of DNA. "These proteins are a missing link in the chain of events that explain how DNA can be efficiently demethylated," said Lars Schomacher, first author on the paper.

Intriguingly, DNA demethylation has been shown to involve proteins of the DNA repair machinery. Thus epigenetic gene regulation and genome maintenance are linked. Schomacher and his colleagues identified in Neil1 and Neil2 two more repair factors that not only protect the DNA's integrity but are also involved in DNA demethylation. The researchers showed that the role of Neils is to boost the activity of another , Tdg, which is known to be of central importance for DNA demethylation.

Both the Neils and Tdg are essential proteins for survival and development. Schomacher et al. carried out experiments where they removed either one of these proteins in very early frog embryos. They found that the embryos had severe problems developing and died before reaching adulthood.

Failure in setting and resetting methyl marks on DNA is involved in developmental abnormalities and cancer, where cells forget what type they are and start to divide uncontrollably. Understanding which proteins are responsible for DNA demethylation will help us to understand more about such disease processes, and may provide new approaches to develop treatments for them.

Explore further: New insights into cooperativity in gene regulation

More information: Lars Schomacher et al. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation, Nature Structural & Molecular Biology (2016). DOI: 10.1038/nsmb.3151

Related Stories

New insights into cooperativity in gene regulation

December 16, 2015

In a study published in Nature, Dirk Schübeler and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) describe how the interplay between transcription factors and epigenetic modifications of DNA ...

Innate immune defenses triggered by unsuspected mechanism

January 12, 2016

To the amazement of researchers in immunology and genetics, a previously unsuspected mechanism is activated in the presence of pathogens after only a few hours. "In the hours following an attack by bacteria, we observed the ...

Deciphering the cellular reading system of DNA methylation

April 12, 2013

(Medical Xpress)—Scientists from the FMI identify how a family of proteins reads the methylation marks on the DNA so critical for cell development. These MBD proteins bind directly to methylation marks and inactivate the ...

Recommended for you

Atlas of the RNA universe takes shape

December 7, 2016

As the floor plan of the living world, DNA guides the composition of animals ranging from unicellular organisms to humans. DNA not only helps shepherd every organism from birth through death, it also plays an essential role ...

Gene "bookmarking" regulates the fate of stem cells

December 7, 2016

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.