Squeezing cells into stem cells

January 11, 2016
A scheme of an iPSC colony emerging in a 3-D gel (made with DEMCON Nymus 3-D). Credit: Matthias Lutolf (EPFL)

EPFL scientists have developed a new method that turns cells into stem cells by "squeezing" them. The method paves the way for large-scale production of stem cells for medical purposes.

Stem cells are now at the cutting edge of . They can transform into a cells of different organs, offering new ways to treat a range of injuries and diseases from Parkinson's to diabetes. But producing the right type of in a standardized manner is still a serious challenge. EPFL scientists have now developed a that boosts the ability of to revert into stem cells by simply "squeezing" them into shape. Published in Nature Materials, the new technique can also be easily scaled up to produce stem cells for various applications on an .

There are different types of stem cells, but the ones that are of particular medical interest are the so-called "induced " or iPSCs. These are derived from mature, that have been genetically reprogrammed to behave like stem cells (which is why they are "induced"). iPSCs can then be regrown into a whole range of different cells types, e.g. liver, pancreatic, lung, skin etc.

There have been many attempts to design a standardized method for generating such stem cells. But even the most successful methods turn out to not be very effective, especially for use on a large scale. A major issue is that existing techniques use the two-dimensional environment of a petri dish or cell culture flask, whereas cells in the body exist in a three-dimensional world.

The lab of Matthias Lutolf at EPFL has now developed a new method that may help to overcome these challenges. The approach uses a three-dimensional cell culture system. Normal cells are placed inside a gel that contains normal growth nutrients. "We try to simulate the three-dimensional environment of a living tissue and see how it would influence stem cell behavior," explains Lutolf. "But soon we were surprised to see that cell reprogramming is also influenced by the surrounding microenvironment." The microenvironment in this case, is the gel.

The researchers discovered that they could reprogram the cells faster and more efficiently than current methods by simply adjusting the composition - and hence the stiffness and density - of the surrounding gel. As a result, the gel exerts different forces on the cells, essentially "squeezing" them.

As a new phenomenon, this is not entirely understood. However, the scientists propose that the three-dimensional environment is key to this process, generating mechanical signals that work together with genetic factors to make the cell easier to transform into a stem cell.

"Each cell type may have a 'sweet spot' of physical and chemical factors that offer the most efficient transformation," says Lutolf. "Once you find it, it is a matter of resources and time to create stem cells on a larger scale."

The greater impact of this discovery is possibly quantity. The technique can be applied to a large number of cells to produce stem cells on an industrial scale. Lutolf's lab is looking into this, but their main focus is to better understand the phenomenon, and to find the 'sweet spots' for other cell types.

Explore further: Eyes turn into skin: How inflammation can change the fate of cells

More information: Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. Defined three-dimensional microenvironments boost the induction of stem cell pluripotency. Nature Materials 11 January 2016. DOI: 10.1038/nmat4536

Related Stories

A Prkci gene keeps stem cells in check

October 31, 2015

When it comes to stem cells, too much of a good thing isn't wonderful: producing too many new stem cells may lead to cancer; producing too few inhibits the repair and maintenance of the body.

Dead feeder cells support stem cell growth

April 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells with essential nutrients.

Recommended for you

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(Phys.org)—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.