Unexpected phenomenon discovered at the surface of a transition metal oxide material

Aug 01, 2014
J.D. Burton, left, and Evgeny Tsymbal. Credit: Troy Fedderson/University Communications

(Phys.org) —An international team of scientists, including University of Nebraska-Lincoln physicists J. D. Burton and Evgeny Tsymbal, has discovered what they called an intriguing and entirely unexpected phenomenon at the surface of a transition metal oxide material. Such materials serve as a hotbed for electrochemical applications like solid fuel cells and oxygen sensors, as well as potential applications in future electronic devices.

"Our work shows that it's possible to detect and characterize the smallest features on the surfaces of , even down to the atomic scale," said Burton, a research assistant professor of physics. "This could lead to huge advancements in the understanding and control of electronic, magnetic and chemical properties of this important class of materials."

The findings were reported in the July 24 issue of Nature Communications, the Nature Publishing Group's multidisciplinary online journal of research in all areas of the biological, physical and chemical sciences.

The discovery is based on scanning tunneling microscopy, or STM, of samples prepared and measured at Oak Ridge National Laboratory in Tennessee. Using atomic scale STM measurements, researchers were able to map out the precise positions of oxygen atoms on the surface of this oxide. Surprisingly, it was found that oxygen atoms not only order in a regular array of sites, but superimposed on this regular array was a subtle zig-zag like pattern of distortions.

The nature of this zig-zag-like phenomenon was first unclear to the scientists, but Burton and Tsymbal were able to discover the explanation by modeling the atomic structure and electronic properties of the material surface through computations at UNL's Holland Computing Center. Results indicated that changes in the electronic structure of the surface due to the presence of extra led to a subtle structural transformation of the material just below the surface.

"Crucially, our computations and analysis were decisive for the understanding of the origin of this phenomenon," Burton said. "We were able to elucidate the microscopic mechanism responsible for this exciting discovery."

Collaborative research on complex oxide materials is one of the constituents of UNL's Materials Research Science and Engineering Center supported by the National Science Foundation.

"This remarkable finding shows the deep underlying physics controlling properties of these materials," said Tsymbal, George Holmes Professor of Physics and director of the center. "It also demonstrates the critical importance of collaborations between experimentalists and theorists in elucidating new phenomena."

It's the seventh time in last four years that research from Tsymbal's group has been published in of the highest-impact interdisciplinary journals such as Science, the Proceedings of the National Academy of Sciences, and Nature Publishing Group.

Explore further: Study reveals new characteristics of complex oxide surfaces

add to favorites email to friend print save as pdf

Related Stories

The quest to discover new technology

Feb 21, 2011

Electronic devices like smart phones, computers and mp3 players have become central pieces of everyday life and consumers have grown accustomed to seeing new and improved models every time they turn around. But continuing ...

ORNL finding goes beyond surface of oxide films

Aug 13, 2013

(Phys.org) —Better batteries, catalysts, electronic information storage and processing devices are among potential benefits of an unexpected discovery made by Oak Ridge National Laboratory scientists using ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Recommended for you

New filter could advance terahertz data transmission

23 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

23 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.