Inexpensive flexible fiber perovskite solar cells

Aug 04, 2014
Inexpensive flexible fiber perovskite solar cells

(Phys.org) —Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells in the form of fibers that can be woven into a textile. The flexible, coaxial cells are based on a perovskite material and carbon nanotubes; they stand out due to their excellent energy conversion efficiency of 3.3 % and their low production cost.

The dilemma for : they are either inexpensive and inefficient, or they have a reasonable and are very expensive. One solution may come from solar cells made of perovskite materials, which are less expensive than silicon and do not require any expensive additives. Perovskites are materials with a special crystal structure that is like that of perovskite, a calcium titanate. These structures are often semiconductors and absorb light relatively efficiently. Most importantly, they can move electrons excited by light for long distances within the crystal lattice before they return to their energetic ground state and take up a solid position – a property that is very important in solar cells.

A team led by Hisheng Peng at Fudan University in Shanghai has now developed perovskite solar cells in the form of flexible fibers that can be woven into electronic textiles. Their production process is relatively simple and inexpensive because it uses a solution-based process to build up the layers.

The anode is a fine stainless steel wire coated with a compact n-semiconducting . A layer of porous nanocrystalline titanium dioxide is deposited on top of this. This provides a large surface area for the subsequent deposition of the perovskite material CH3NH3PbI3. This is followed by a layer made of a special organic material. Finally a transparent layer of aligned carbon nanotubes is continuously wound over the whole thing to act as the cathode. The resulting fiber is so fine and flexible that it can be woven into textiles.

The perovskite layer absorbs light, that excites electrons and sets them free, causing a charge separation between the electrons and the formally positively charged "holes" The electrons enter the conducting band of the compact titanium dioxide layer and move to the anode. The "holes" are captured by the organic layer. The large surface area and the high electrical conductivity of the cathode aid in the rapid conduction of the charges with high photoelectric currents. The fiber solar cell can attain an energy conversion efficiency of 3.3 %, exceeding that of all previous coaxial fiber solar cells made with either dyes or polymers.

Explore further: Solar cells based on stacked textile electrodes for integration into fabrics

More information: Qiu, L., Deng, J., Lu, X., Yang, Z. and Peng, H. (2014), "Integrating Perovskite Solar Cells into a Flexible Fiber." Angew. Chem. Int. Ed. doi: 10.1002/anie.201404973

add to favorites email to friend print save as pdf

Related Stories

Scientists develop pioneering new spray-on solar cells

Aug 01, 2014

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

A new stable and cost-cutting type of perovskite solar cell

Jul 17, 2014

Perovskite solar cells show tremendous promise in propelling solar power into the marketplace. The cells use a hole-transportation layer, which promotes the efficient movement of electrical current after exposure to sunlight. ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Birger
not rated yet Aug 04, 2014
What is the practical life span of the devices?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.