Virus rounds up enzymes, disarms plant

Jun 02, 2014
A model depicting that plant virus proteins (TGBp1: blue) aggregate and inactivate double-stranded RNA (dsRNA) synthesizing protein complexes (yellow: SGS3/RDR6 bodies). Credit: (c) Shigetou Namba, The University of Tokyo.

University of Tokyo researchers have described how a plant-virus protein suppresses an important plant defense mechanism that remembers viral genetic information, providing a new target for developing the first-ever chemical against plant viruses that globally cause more than $60 billion of crop losses each year.

Invading viruses carry genetic material that hijacks the host cell's machinery, fooling it into producing proteins and new viruses. All cells from fungi to plants and mammals employ RNA silencing, a cellular process essential for the regulation of gene expression that also functions as an important . Through RNA silencing, plant cells recognize this viral genetic material, remember and copy it so that other cells in the organism can be warned and destroy the virus. Viruses are known to fight back with RNA silencing suppressors, proteins that inhibit this defense mechanism, but how they interfere with the recording of viral was unknown. Now, a research team headed by Professor Shigetou Namba and Dr. Yukari Okano in the Graduate School of Agricultural and Life Sciences has shown for the first time that the plant virus protein TGBp1 disarms RNA silencing by causing two enzymes involved in producing copies of viral genetic information to aggregate as inactive clusters in cells surrounded by the virus protein.

The two enzymes are SGS3 and RDR6, which are involved in producing copies of viral genetic information as double-stranded RNA, an essential step in the plant defense process. The researchers demonstrated that TGBp1 interacted with and inhibited the functions of SGS3 and RDR6, and attached fluorescent markers to TGBp1 and SGS3 to show visually that SGS3, which is usually distributed throughout the cell, formed clusters surrounded by TGBp1. These results suggest that TGBp1 causes the enzymes SGS3 and RDR6 to form clusters, impeding the formation of double-stranded RNA and inhibiting the recording of viral genetic information, thus reducing plant resistance to viral infection.

Fluorescent image of plant virus protein surrounding plant protein complexes within a cell. Plant virus protein (TGBp1: blue) aggregates and inactivates double-stranded RNA (dsRNA) synthesizing protein complex (yellow: SGS3/RDR6 complex) that remembers genetic information of the virus. Image taken with a confocal laser scanning microscopy. Credit: (c) Shigetou Namba, The University of Tokyo.

"We expected that recording viral genetic information would be the most important step in RNA silencing, because if you can't remember the virus, you can't warn the rest of the organism and stop it spreading," explains Professor Namba. "This would also make it important for the virus to target, but no one had confirmed any viral RNA silencing suppressors targeting this step in . Now we are very excited to be the first to do so, and we expect that other plant viral proteins will be found to have similar functions. Recently other researchers have reported that some viruses infecting humans also have RNA silencing suppressors, so this research may also contribute to the development of medicines targeting those ."

Explore further: Trick that aids viral infection is identified

More information: Yukari Okano, Hiroko Senshu, Masayoshi Hashimoto, Yutaro Neriya, Osamu Netsu, Nami Minato, Tetsuya Yoshida, Kensaku Maejima, Kenro Oshima, Ken Komatsu, Yasuyuki Yamaji and Shigetou Namba, "In planta recognition of a dsRNA synthesis protein complex by a potexviral RNA silencing suppressor" The Plant Cell 26 (5) May 2014. DOI: 10.1105/tpc.113.120535

add to favorites email to friend print save as pdf

Related Stories

Trick that aids viral infection is identified

Jan 30, 2014

Scientists have identified a way some viruses protect themselves from the immune system's efforts to stop infections, a finding that may make new approaches to treating viral infections possible.

How the body fights against viruses

Apr 22, 2014

Scientists of the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna, together with colleagues of the ETH Zurich, have now shown how double stranded RNA, such as viral ...

People also have antiviral 'plant defences'

Sep 27, 2010

In addition to known antiviral agents such as antibodies and interferons, people also seem to have a similar immune system to that previously identified in plants. This is the result of research carried out by Esther Schnettler ...

Researchers take mathematical route to fighting viruses

Mar 24, 2014

Mathematicians at the University of York have joined forces with experimentalists at the University of Leeds to take an important step in discovering how viruses make new copies of themselves during an infection.

Recommended for you

Hydrogen powers important nitrogen-transforming bacteria

14 hours ago

Nitrite-oxidizing bacteria are key players in the natural nitrogen cycle on Earth and in biological wastewater treatment plants. For decades, these specialist bacteria were thought to depend on nitrite as ...

New tool aids stem cell engineering for medical research

Aug 28, 2014

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

User comments : 0