Solitary acoustic waves observed to propagate at a lipid membrane interface

Jun 20, 2014 by John Hewitt report
An optically measured solitary wave (top) in lipid interface looks strikingly similar to an AP. Credit: Shamit Shivastava

(Phys.org) —Defining the essential character of the action potential of neurons has proven to be an elusive task. As typically happens, the biggest advances seem to have been made early on. In this case it was Hodgkin and Huxley working with the giant unmyelinated axons of squids. By squeezing out the "axoplasm" and replacing it with various concoctions these guys could isolate the effects of different ions and the channels through which they flowed. Using their data, they were able to create one of the most successful models known to science.

A couple of concerns remained through all of this, perhaps best highlighted by the ever intriguing and often beguiling Gerald Pollack in his book Cells, Gells, and the Engines of Life. For one thing, membranes seemed to be excitable all by themselves. Pollack notes that patches of bare held within the tip of a patch pipet electrode show tiny "channel" currents even without any protein channels. These heretical mini-spikelets don't seem to be simple leaks at the borders but are more likely transient membrane effects which created tiny pores.

Perhaps even more alarming was the fact that good old axoplasm itself, when stripped of its channel-bearing membrane, still shows some ability to transduce a spike (albeit much attenuated and slowed). Pollack attributes this ability to a propagating phase change in the cytoplasmic gel which unmasks largely immobile negative charges on proteins, previously bound with cations and an ordered hydration shell. This water layer, an interface reaching up to several molecules deep, is also critical to understanding the behavior of the lipid membrane. Some the most novel incites in neuroscience now spring from the thermodynamic characterization of this interface.

In the spirit of physical chemistry a new breed of physical neuroscientists are now combining fairly old, low tech instruments with high tech optics to explore membranes. A recent paper from Shamit Shrivastava and Matthias Schneider in The Journal of the Royal Society publication Interface takes the field a bold step forward with its claims to have caught a glimpse of the elusive creature that has come to be known as the solitary pulse. The mathematical construct known to many as "solitions" are special cases of these more general pulses. This would be the first time that solitary elastic waves have been observed propagating in .

The membranes they studied were monolayers of Dipalmitoylphosphatidylcholine (DCCP), more familiar to us as standard lung surfactant. Most organisms, with exception of a few Archae that have fused two phospholipid tails together, use bilayer membranes which work great for cells. For membrane experiments however, researchers typically use a device known as a Langmuir trough. This workhorse of membrane biophysics (in service since 1917) is basically a small pan with an air-water interface comprised of single amphiphilic monolayer. The membrane can be squeezed from the side as needed, and the lateral surface pressure and membrane tension in the lipid measured with a Wilhelmy plate. This gauge is basically a sensitive electrobalance hooked to vertical plate that is dipped into the trough and wetted. The resultant forces acting on the plate can then be directly quantified.

To initiate longitudinal pulses a razor blade was placed into the trough and actuated horizontally by a piezoelectric element. In some incarnations of the setup a Kelvin or AFM probe can be used to detect surface potential or charge. The refinement that permitted the researchers to remotely sense solitary waves was to use fluorescence resonance energy transfer, or FRET. Here a donor chromophore transfers energy through nonradiative dipole-dipole coupling to an acceptor chromophore when it is within its near field. It can therefore be used as a convenient and fast way to measure the separation between two molecules, and hence their perturbation by a pulse. In ratiometric FRET signal to noise is improved by simultaneously acquiring emission intensity at two wavelengths, here 535 and 605 nm. Critical for these experiments, the longitudinal compression component can be distinguished from the transverse capillary components of a pulse.

Solitary pulses with a threshold of excitation are dependant upon the existence of a nonlinearity in the elasticity of the interface. For both mono- and bilayers this can arise as a peak in their compressibility, or susceptibility (cp,kT, etc.). In a dissipative medium, amplitude decay will eventually result in broadening of the pulse to the point where the nonlinearity can no longer balance the dispersion. At some point the amplitude of the pulse will slip below threshold. For real nerves where spike shape is maintained for long distances, it has been suggested that the pulse is replenished by ion channels along the axons or at their nodes.

Shrivastava says they are now collaborating with Ronald Netz in Berlin to computationally study interstitial sound waves starting from scratch. The properties of the surrounding media play an important role in dissipation and propagation of waves. Of particular interest here is how myelin might aide and abet nerve pulses by virtue of its unique construction or phase transitions of its own. It is also worthwhile to note that cell membranes are not just found at their periphery, cells are filled with them. Transport phenomena, and the trafficking and segregation of proteins through various membrane fluctuations are fascinating new areas of study we might encourage you to read more about on this site.

One prediction of the Hodgkin-Huxely model mentioned above, is that because of channel inactivation, collision of two pulses should result in their annhilation. In many real neurophysiology experiments where so-called "antidromic stimulation" has used to identify which regions of the brain are connected to each other (and how fast the conduction pathways are), this has been found to be the case. However recent studies have found that nerve pulses can and do survive collisions, in agreement with a soliton theory for electromechanical nerve pulse propagation. Although Shrivastava and Schneider found pulse velocities compareable to those of action potentials in unmyelinated axons, they suggest that velocity and pulse shape are not the best criteria to gauge spike propagation. They offer that the variation in velocity as a function of state, the variation of pulse shape as a function of degree of nonlinearity, and the existence of a thermodynamically-defined threshold are the key properties.

There is still a bit of mismatch between this emerging field and traditional biologists who don't typically quantify cells using equations of state. Stepping outward for a moment, we might recall that Schrodinger's wave equation was initially considered by many to be a mathematical fiction. It was eventually concluded that the wave function, meaning a packet of vibrations, depicted probabilities rather than energy. When luminaries like Steven Hawking now speak of a universal wave function—the state function of the entire universe—most physicists will still want more than a psi symbol and a couple more characters. In the same way, biologists want more for the cell.

In starting from the ground up and building membranes from scratch, we now have a way to fully address the spike experimentally. Constructing artificial axon-like geometries from membranes might be the next goal along this path. Adding channels, proteins, subsurface actin or spectrin, and a contiguous internal cytoskeleton will be even more illuminating. If we can then myelinate these structures, as has been already achieved for artificial tubes in a culture setting, we might begin to probe questions famously raised by the late Ichiji Tasaki. A pioneer in measuring all things mechanical and thermal regarding spikes, Ichiji also discovered the insulating function of myelin, saltatory conduction between nodes, and how sound vibrations are transduced into spikes in the auditory system.

Showing that membranes can support solitary elastic signalling is a huge step; demonstrating that they are in fact the physical basis of nerve pulses and communication remains as the challenge.

Explore further: Why cells allow the passage of disease

More information: Evidence for two-dimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling, J. R. Soc. Interface 6 August 2014 vol. 11 no. 97 20140098. rsif.royalsocietypublishing.or… 11/97/20140098.short

add to favorites email to friend print save as pdf

Related Stories

Why cells allow the passage of disease

May 13, 2014

Using a digital microscopic holography technique, specialists at the Center for Research in Optics in Mexico, seek to know under what conditions the membranes of cells are deformed or broken, and determine ...

Fitting Kv potassium channels in the PIP2 puzzle

Aug 27, 2012

A recent study in the Journal of General Physiology brings new insights to an area of ion channel regulation: whether voltage-gated potassium (Kv) channels can be regulated by physiological changes to PIP ...

Laser light needs more bass

May 21, 2014

They shed light on atomic and molecular processes: ultrashort laser pulses are required to study extremely fast quantum phenomena. For years, scientists have been trying to tune the shape of light waves so ...

Protein structure: Peering into the transit pore

Feb 07, 2014

The lipid-rich membranes of cells are largely impermeable to proteins, but evolution has provided a way through – in the form of transmembrane tunnels. A new study shows in unmatched detail what happens ...

Recommended for you

What's next for the Large Hadron Collider?

Dec 17, 2014

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

EWH
3 / 5 (2) Jun 21, 2014
From the article referenced in the story (http://arxiv.org/...v1.pdf): "Due to its dissipative nature, the action potential in the Hodgkin-Huxley model should be accompanied by heat production. However, investigations of the heat generated during the action potential resulted in the finding that, within experimental error, no such heat is released [5{8]. An initial phase of apparent heat release is followed by a second phase of heat absorption. The emission and reabsorption of heat is exactly in phase with the observed voltage changes, and the integrated heat associated with the action potential is zero within experimental accuracy. The data thus indicates that the action potential is an adiabatic (non-dissipative) phenomenon such as, e.g., a sound wave. This finding is in conflict with the HH model as acknowledged by Hodgkin."

So the model of neural signalling almost universal in neuroscience and medicine is in conflict with the simplest observations of power consumption.
EWH
3.7 / 5 (3) Jun 21, 2014
The sound wave propagating down the axon is of a peculiar type, with a sol-gel transition of the membrane which causes a change in separation of the charges inside and outside the membrane, thus causing a capacitive voltage multiplication and thus the appearance of an electrical signal.

It has long been known that neural signals travel at a speed similar to sound rather than electricity, but Heimberg et al.'s theory gives the details of how this occurs. It also seems that white matter and nerve myelinization acts like "speaking tubes". The acoustic soliton theory also explains the curious ability of ultrasound to cause neural stimulation, as in Wm. Tyler/ Neurotrek's devices.
otero
Jun 21, 2014
This comment has been removed by a moderator.
thingumbobesquire
not rated yet Jun 22, 2014
Solitons are necessary nonlinear metastable ensembles that allow for potentiation of various degrees of phase changes in the lithosphere, biosphere and noosphere both within those separate domains and in their manifold interactions. Therefore, this research orientation is very promising indeed.
johnhew
5 / 5 (1) Jun 22, 2014
that's quite a global vantage point there Bob
otero
Jun 24, 2014
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.