Harnessing skyrmions for electronics and spintronics applications

March 20, 2014
Figure 1: Skyrmions are swirling patterns in the magnetic orientations of atoms (arrows) that can be arranged in ordered patterns. Credit: M. Mochizuki et al.

Skyrmions are 'whirls' in the magnetization of certain magnetic materials that show promise for future electronics and spintronics applications if they can be harnessed and manipulated. Naoto Nagaosa and colleagues from the RIKEN Center for Emergent Matter Science, in collaboration with Masahito Mochizuki from Aoyama Gakuin University and other researchers, have discovered that skyrmions can be manipulated thermally using an electron beam.

Each atom in a ferromagnetic material acts like a tiny bar magnet. Although all of the magnets usually point in the same direction, under certain conditions some can tilt away from their neighbors.

Skyrmions are whirls within this 'sea' of atomic bar magnets. They are usually free to drift around, but an can lock them into regular patterns (Fig. 1) in crystals of manganese silicide and copper oxoselenite.

While studying these materials by , Nagaosa and his colleagues were surprised to find that the skyrmion patterns rotated continuously, completing a full revolution every few seconds. Under a more intense , they rotated faster.

In searching for a cause, the researchers quickly ruled out the minuscule magnetic field of the electron beam, along with the electric current that the beam might induce. Instead, they concluded that the heating effect of the electron beam was responsible for the skyrmion dance.

Noting that the rotation always occurred in a clockwise direction, the researchers then developed a mathematical model to describe the motion. Their model accurately simulated the observed motion, revealing that the rotation is driven solely by the thermal gradient that runs outward from the center of the sample.

The heat is carried outward by small ripples in the magnetic fabric of the material known as magnons. As the magnons flow, they bounce off the swirling skyrmions—a phenomenon referred to as the magnon Hall effect—and force them to rotate in a clockwise direction. Reversing the external switches the rotation to an anticlockwise direction. The discovery is likened to Feynman's ratchet, essentially a tiny engine driven by heat that was described by the physicist Richard Feynman in the 1960s.

Nagaosa says that the findings could aid the development of low-energy memory and logic devices where information is encoded by skyrmions. Previously, electric currents have been used to manipulate skyrmions in metallic magnets. Heat could now be used to drive their motion in electrically insulating magnets, which tend to have lower energy dissipation and would better preserve the high-density data held by the skyrmions.

Explore further: First direct observation of unusual magnetic structure could lead to novel electronic, magnetic memory devices

More information: Mochizuki, M., Yu, X. Z., Seki, S., Kanazawa, N., Koshibae, W., Zang, J., Mostovoy, M., Tokura, Y. & Nagaosa, N. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nature Materials 13, 241–246 (2014). dx.doi.org/10.1038/nmat3862

Related Stories

Manipulating the texture of magnetism

February 3, 2012

Knowing how to control the combined magnetic properties of interacting electrons will provide the basis to develop an important tool for advancing spintronics: a technology that aims to harness these properties for computation ...

Magnetic vortices with electric sense

August 17, 2012

In the field of magnetic materials, a rapidly expanding area of study concerns stable nanometer-scale spin arrangements. Spins are the fundamental magnetic entities in solids, and patterns made of several spins could be useful ...

Recommended for you

Light-powered 3-D printer creates terahertz lens

April 29, 2016

From visible light to radio waves, most people are familiar with the different sections of the electromagnetic spectrum. But one wavelength is often forgotten, little understood, and, until recently, rarely studied. It's ...

A tiny switch for a few particles of light

April 29, 2016

The Jedi knights of the Star Wars saga are engaged in an impossible fight. This does not result from the superiority of the enemy empire, but from physics because laser swords cannot be used for fighting like metallic blades: ...

Physicists detect the enigmatic spin momentum of light

April 25, 2016

Ever since Kepler's observation in the 17th century that sunlight is one of the reasons that the tails of comets to always face away from the sun, it has been understood that light exerts pressure in the direction it propagates. ...

Superfast light source made from artificial atom

April 26, 2016

All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.