Manipulating the texture of magnetism

February 3, 2012
Figure 1: A skyrmion is a vortex-like arrangement of spins, depicted here as arrows. Knowing how to control their motion could lead to a new class of electronic memory. Credit: 2012 RIKEN

Knowing how to control the combined magnetic properties of interacting electrons will provide the basis to develop an important tool for advancing spintronics: a technology that aims to harness these properties for computation and communication. As a crucial first step, Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako, and his colleagues have derived the equations that govern the motion of these magnetic quasi-particles.

The magnetic behavior of a material is a result of a phenomenon known as spin. This can be thought of as the rotation of and is usually visualized as an arrow pointing along the . In some crystalline solids, neighboring electron spins can interact with each other such that the arrows form vortex-like patterns (Fig. 1). This spin ‘texture’ is robust and remains intact despite outside influences; it can also move through the material crystal, even though the atoms themselves remain stationary. Because of these properties, physicists often think of such spin vortices as in their own right; they call them skyrmions. The work of Nagaosa, with researchers from China, the Netherlands and Korea, provides a theoretical framework that describes skyrmion dynamics.

Skyrmions, and the ability to control them, have the potential to increase the packing density of magnetic recording media; as such, skyrmion-based devices are likely to be more efficient than conventional memories. “Skyrmions can be moved with a current density as much as a million times smaller than those needed to control magnetic structures, thus far,” explains Nagaosa.

The researchers theoretically investigated skyrmion crystals—ordered arrays of many skyrmions—that are supported by thin metallic films. Nagaosa and his collaborators had suggested previously that skyrmion crystals are more stable in thin films than they are in thicker ‘bulk’ materials, making films more amenable to practical applications. The equations of motion derived by Nagaosa and colleagues also showed: how the electrons are influenced by skyrmions; that skyrmions can become pinned to impurities in the film; and that the skyrmion trajectory bends away from the direction of an electrical current. The researchers called this phenomenon the skyrmion Hall effect because of its similarity to the sideways force that is exerted on an electron as it moves through a conductor in a magnetic field, which was discovered by Edwin Hall in 1879. 

“Next we intend to study the effect of thermal fluctuations of the skyrmion structure and the optical manipulation of skyrmions,” says Nagaosa. “These are the important issues on the road towards applications.”

Explore further: Vortices get organized

More information: Zang, J., et al. Dynamics of skyrmion crystals in metallic thin films. Physical Review Letters 107, 136804 (2011).

Yi, S.D., et al.Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet. Physical Review B 80, 054416 (2009).

Related Stories

Vortices get organized

February 25, 2011

Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory.

Discovery of a new magnetic order

July 31, 2011

Physicists at Forschungszentrum Jülich and the universities of Kiel and Hamburg are the first to discover a regular lattice of stable magnetic skyrmions – radial spiral structures made up of atomic-scale spins – ...

Unfazed by imperfections

July 8, 2011

While insulating against electrical currents in their interior, the surface of materials called topological insulators permits the flow of electron spins relatively unhindered. The almost lossless flow of spin information ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Macksb
1 / 5 (1) Feb 06, 2012
Nice, colorful diagram...It deserves a more colorful caption.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.