Molecular biology mystery unravelled

Feb 18, 2014
Molecular biology mystery unravelled

The nature of the machinery responsible for the entry of proteins into cell membranes has been unravelled by scientists, who hope the breakthrough could ultimately be exploited for the design of new anti-bacterial drugs. Groups of researchers from the University of Bristol and the European Molecular Biology Laboratory (EMBL) used new genetic engineering technologies to reconstruct and isolate the cell's protein trafficking machinery.

Its analysis has shed new light on a process which had previously been a mystery for molecular biologists.

The findings, published today in the Proceedings of the National Academy of Sciences (PNAS), could also have applications for synthetic biology - an emerging field of science and technology, for the development of novel with useful activities.

Proteins are the building blocks of all life and are essential for the growth of cells and tissue repair. The proteins in the typically help the cell interact with its environment and conserve energy.

Researchers were able to identify the 'holo-translocon' as the machinery which inserts proteins into the membrane. It is a large membrane protein complex and is uniquely capable of both -secretion and membrane-insertion.

Professor Ian Collinson, from the School of Biochemistry at Bristol University said: "These findings are important as they address outstanding questions in one of the central pillars of biology, a process essential in every cell in every organism. Having unravelled how this vital holo-translocon works, we're now in a position to look at its components to see if they can help in the design or screening for new anti-bacterial drugs."

The discovery is a result of an international collaboration between the University of Bristol team and Drs Christiane Schaffitzel and Imre Berger of the European Molecular Biology Laboratory (EMBL) outstation in Grenoble, France.

Explore further: Plants recycle too

More information: 'Membrane protein insertion and proton-motiveforce-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC' by R. Schulze, J. Komar, M. Botte, W. Allen, S. Whitehouse, V. Gold, J. Lycklama a Nijeholt, K. Huard, I. Berger, C. Schaffitzel and I. Collinson in PNAS.

add to favorites email to friend print save as pdf

Related Stories

Scientists map one of life's molecular mysteries

Jan 26, 2012

All living organisms are made up of cells, behind these intricate life forms lie complex cellular processes that allow our bodies to function. Researchers working on protein secretion — a fundamental process in biology ...

Plants recycle too

Feb 13, 2014

A research team from VIB and Ghent University (Belgium), and Staffan Persson from the Max Planck Institute of Molecular Plant Physiology in Potsdam (Germany) has now identified a new protein complex which is crucial for endocytosis ...

Inner workings of a cellular nanomotor revealed

Feb 05, 2014

Our cells produce thousands of proteins but more than one-third of these proteins can fulfill their function only after migrating to the outside of the cell. While it is known that protein migration occurs ...

Recommended for you

For cells, internal stress leads to unique shapes

5 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

8 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
5 / 5 (1) Feb 19, 2014
Interesting, since this should have evolved already in the UCA, the oldest protein transport machinery is generic and originated before the UCA split.

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...