Molecular biology mystery unravelled

Feb 18, 2014
Molecular biology mystery unravelled

The nature of the machinery responsible for the entry of proteins into cell membranes has been unravelled by scientists, who hope the breakthrough could ultimately be exploited for the design of new anti-bacterial drugs. Groups of researchers from the University of Bristol and the European Molecular Biology Laboratory (EMBL) used new genetic engineering technologies to reconstruct and isolate the cell's protein trafficking machinery.

Its analysis has shed new light on a process which had previously been a mystery for molecular biologists.

The findings, published today in the Proceedings of the National Academy of Sciences (PNAS), could also have applications for synthetic biology - an emerging field of science and technology, for the development of novel with useful activities.

Proteins are the building blocks of all life and are essential for the growth of cells and tissue repair. The proteins in the typically help the cell interact with its environment and conserve energy.

Researchers were able to identify the 'holo-translocon' as the machinery which inserts proteins into the membrane. It is a large membrane protein complex and is uniquely capable of both -secretion and membrane-insertion.

Professor Ian Collinson, from the School of Biochemistry at Bristol University said: "These findings are important as they address outstanding questions in one of the central pillars of biology, a process essential in every cell in every organism. Having unravelled how this vital holo-translocon works, we're now in a position to look at its components to see if they can help in the design or screening for new anti-bacterial drugs."

The discovery is a result of an international collaboration between the University of Bristol team and Drs Christiane Schaffitzel and Imre Berger of the European Molecular Biology Laboratory (EMBL) outstation in Grenoble, France.

Explore further: New fat cells created quickly, but they don't disappear

More information: 'Membrane protein insertion and proton-motiveforce-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC' by R. Schulze, J. Komar, M. Botte, W. Allen, S. Whitehouse, V. Gold, J. Lycklama a Nijeholt, K. Huard, I. Berger, C. Schaffitzel and I. Collinson in PNAS.

add to favorites email to friend print save as pdf

Related Stories

Scientists map one of life's molecular mysteries

Jan 26, 2012

All living organisms are made up of cells, behind these intricate life forms lie complex cellular processes that allow our bodies to function. Researchers working on protein secretion — a fundamental process in biology ...

Plants recycle too

Feb 13, 2014

A research team from VIB and Ghent University (Belgium), and Staffan Persson from the Max Planck Institute of Molecular Plant Physiology in Potsdam (Germany) has now identified a new protein complex which is crucial for endocytosis ...

Inner workings of a cellular nanomotor revealed

Feb 05, 2014

Our cells produce thousands of proteins but more than one-third of these proteins can fulfill their function only after migrating to the outside of the cell. While it is known that protein migration occurs ...

Recommended for you

The origins of polarized nervous systems

6 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

10 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

11 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
5 / 5 (1) Feb 19, 2014
Interesting, since this should have evolved already in the UCA, the oldest protein transport machinery is generic and originated before the UCA split.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.