Highly porous organic polymer shows promise as CO2 trap

Feb 12, 2014 by Sathya Achia Abraham
A VCU team's research of a highly porous organic polymer is featured on the cover of Chemistry of Materials, a journal of the American Chemical Society.

(Phys.org) —As the fight against global warming heats up, scientists around the world are in pursuit of ways to generate natural gas without compromising the environment and human health. But what if there were a way to separate and capture carbon dioxide (CO2), a greenhouse gas and major contributor to global warming, before it even had a chance to wreak havoc?

A new material – created by a team of Virginia Commonwealth University scientists – may one day do just that. The team, led by Hani M. El-Kaderi, Ph.D., associate professor of chemistry in the VCU College of Humanities and Sciences, has been examining materials in the laboratory to advance the clean energy initiative.

In a new study published in the Feb. 11 issue of Chemistry of Materials, a journal of the American Chemical Society, El-Kaderi and colleagues report on the synthesis of a highly porous organic polymer that is able to selectively capture CO2 from and . The research is highlighted on the journal's cover.

"CO2 capture from the burning of fossil-based fuels has been proposed as a medium-term solution for until new sources of efficient renewable energies and zero emissions (solar and hydrogen) become available at reasonable cost," El-Kaderi said.

"Because our polymers show high capacity and selectivity for CO2 capture, they can be part of the solution and could inspire researchers in this field to adopt similar materials design strategy to mitigating climate change."

Highly porous organic polymers are designed to selectively admit and retain carbon dioxide inside their pores at the exclusion of others (carbon: black; nitrogen: yellow, oxygen: red). Credit: Timur Islamoglu.

The structure of the polymers created by the VCU team have been physically and chemically engineered at the nano-scale to only trap CO2 when they are exposed to gas mixtures. The polymers are made of extremely small particles that are 500 times smaller than the diameter of a human hair. Each particle has very small pores that are only about one nano-meter, precisely decorated with nitrogen sites to admit and retain CO2 molecules at the exclusion of other gases found in flue gas or natural gas, such as nitrogen and methane. Additionally, the same polymers have also very high surface areas – up to 1,200 square meters per gram – almost six times the area of a tennis court.

"Porous organic polymers are promising candidates for carbon capture and sequestration," said Pezhman Arab, a graduate student in El-Kaderi's research group. "They can be tailor-made using cheap catalysts such as copper to specifically trap harmful gases. They are environment-friendly because of their metal-free nature."

According to El-Kaderi, the team has plans to refine the design of the polymers they have created to enhance its CO2 storage capacity and selective uptake over impurities found in flue gas and methane-rich gases. He said that both parameters are essential for effect adsorbents.

Another research focus will investigate polymers response to light as means for CO2 release.

"In such an energy-saving scenario, CO2 would be released by a mechanical change in the as azo-linkages change their conformation 'dance to light' and squeeze CO2 out of the pores," El-Kaderi said.

Explore further: Carbon capture: Durable plastic doubles as a cleaner

More information: "Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture." Pezhman Arab, Mohammad Gulam Rabbani, Ali Kemal Sekizkardes, Timur İslamoğlu, and Hani M. El-Kaderi. Chemistry of Materials 2014 26 (3), 1385-1392. DOI: 10.1021/cm403161e

Related Stories

Carbon capture: Durable plastic doubles as a cleaner

Sep 25, 2013

Melamine, a small aromatic molecule loaded with nitrogen atoms, has traditionally found fame as a tough plastic that is ideal for making durable dishware and laminate coatings. Research by Mei Xuan Tan, Yugen ...

Nanomaterial to help reduce CO2 emissions

Jul 09, 2013

University of Adelaide researchers have developed a new nanomaterial that could help reduce carbon dioxide emissions from coal-fired power stations.

Sorbents capturing CO2 will make power plants cleaner

Oct 18, 2013

When coal is used to generate electricity in power plants, carbon from the coal bonds with oxygen from air to make carbon dioxide (CO2). Due to concerns about how CO2 impacts global climate, scientists at ...

New material puts pressure on greenhouse gases

Oct 25, 2012

(Phys.org)—Researchers at the University of Nottingham in the United Kingdom recently discovered a novel material that could be used by sophisticated technologies to fight global warming. The study was ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

The Shootist
3 / 5 (2) Feb 12, 2014
Better to spend these precious research dollars on reducing the uncertainty of Climate Change. Any other response promises to be hugely expensive.
FMA
3 / 5 (2) Feb 12, 2014
The thing is there is no incentive for the private sectors to trap the CO2, unless they are able to reuse the CO2 in other money making process.

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...