Carbon capture: Durable plastic doubles as a cleaner

September 25, 2013
Transforming a household plastic into a porous polymer that selectively traps CO2 molecules may make industrial-scale carbon-dioxide capture applications more economic. Credit: iStock/Thinkstock

Melamine, a small aromatic molecule loaded with nitrogen atoms, has traditionally found fame as a tough plastic that is ideal for making durable dishware and laminate coatings. Research by Mei Xuan Tan, Yugen Zhang and Jackie Ying at the A*STAR Institute of Bioengineering and Nanotechnology, Singapore, has shown that this material could play a valuable role in reducing greenhouse gas emissions. They demonstrated that a synthetic procedure turns melamine polymers into low-cost 'scrubbers' that trap and release carbon dioxide (CO2) gas on demand.

Conventional scrubbers use amino alcohols as liquid sorbents to catch waste CO2 gas. The intense energy needed to regenerate these corrosive and unstable liquids after carbon capture has prompted a search for better alternatives. One approach employs highly , such as activated charcoal or inorganic , to soak up large quantities of polluting gases. Unfortunately, most porous substances have poor selectivity towards CO2 and thus must be replaced often.

Tan, Zhang and Ying investigated whether these problems could be alleviated using porous as the robust substances can be chemically tuned to maximize carbon capture. Because melamine has an abundance of amino sites that selectively bind CO2, the team suspected it might act as an efficient sorbent. Until now, however, chemists could introduce pores into melamine polymers only through the use of complex inorganic templates.

The production of melamine plastics usually requires the use of formaldehyde dissolved in water—a procedure that yields little to no porosity. By switching to a more polar known as dimethyl sulfoxide (DMSO) and higher reaction temperatures, the researchers generated a high-surface-area polymer with well-defined 'nanopores'. They theorize that DMSO bonds to melamine and formaldehyde early in the process and helps to assemble the molecules into nanometer-wide rings, which subsequently link together into a foam-like structure.

Tests revealed that the new melamine polymer had impressive carbon capture capacity—it removed over 99% of CO2 from an analyte gas in a typical industrial through-flow column setup and operated nearly instantaneously. Furthermore, the researchers could quickly remove adsorbed CO2 by applying a vacuum that restored its scrubbing capabilities for numerous cycles. The team attributes this unique behavior to reversible CO2 binding inside the polymer's nanopores.

"Compared with other carbon dioxide capture materials, poly(melamine–formaldehyde) is cost efficient, easily synthesized and can be readily scaled up. We welcome industrial partners to work with us to commercialize this technology," say Zhang and Ying.

Explore further: Nanomaterial to help reduce CO2 emissions

More information: Tan, M. X., Zhang, Y. & Ying, J. Y. Mesoporous poly(melamine–formaldehyde) solid sorbent for carbon dioxide capture, ChemSusChem 6, 1186–1190 (2013).dx.doi.org/10.1002/cssc.201300107

Related Stories

Nanomaterial to help reduce CO2 emissions

July 9, 2013

University of Adelaide researchers have developed a new nanomaterial that could help reduce carbon dioxide emissions from coal-fired power stations.

Artificial lung to remove carbon dioxide—from smokestacks

September 10, 2013

The amazingly efficient lungs of birds and the swim bladders of fish have become the inspiration for a new filtering system to remove carbon dioxide from electric power station smokestacks before the main greenhouse gas can ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.