Pushing back against drug-resistant bugs

Jan 22, 2014
Microbiology: Pushing back against drug-resistant bugs
The Pseudomonas aeruginosa bacterium is a common cause of opportunistic infections in humans and has a tendency to acquire resistance to a number of standard antibiotics. Credit: US Centers for Disease Control and Prevention/Janice Haney Carr

Some pathogens can adapt to the presence of drugs that would normally be lethal, and such antibiotic-resistant microbes are now the scourge of hospitals worldwide. Discovering new antibiotics is a laborious process, but research from a team led by Yi Yan Yang of the A*STAR Institute of Bioengineering and Nanotechnology, Singapore, and James Hedrick of the IBM Almaden Research Center, United States, could breathe new life into existing drugs.

One of the standard escape mechanisms employed by bacteria such as Pseudomonas aeruginosa (see image) entails increased production of proteins that purge or break down drug molecules. Polymers that stick to and disrupt bacterial membranes offer an alternative means for killing resistant cells. However, at elevated concentrations these polymers can also inflict damage on bystander host cells. Yang and Hedrick's team explored whether a combination of polymers and antibiotics might offer a safer alternative that draws on the strengths of both approaches.

They generated two different polymers—which they combined with vitamin E, a standard component of the diet of humans—with chemical properties that enabled them to penetrate cell membranes. Both proved more toxic to microbes than the same polymers without vitamin E, efficiently killing P. aeruginosa as well as two other pathogens, the bacterium Staphylococcus aureus and the fungus Candida albicans. Microscopic analysis indicated that the polymers worked by punching holes in the outer membranes of bacterial and fungal cells. Importantly, none of these compounds proved seriously toxic to rat at their effective doses, suggesting that their effects should be relatively specific to their pathogenic targets.

The team subsequently evaluated whether such constructs could bolster antibiotics that tend to lose efficacy against P. aeruginosa. They took the vitamin E-linked polymer formulation that had performed the best against this bacterium and combined it with the doxycycline, streptomycin or penicillin G. While all three received a boost from being combined with the polymer, doxycycline showed the greatest promise, proving capable of effectively eradicating bacteria at very low concentrations of both the drug and polymer. This combination also appeared to generate a greater number of holes in the bacterial cell surface, despite doxycycline not normally damaging the outer membrane when acting on its own.

The researchers hypothesize that the two-pronged attack gives doxycycline rapid access to the cellular interior, thus overwhelming the microbe before it has the opportunity to eliminate the drug. "These synergistic combinations may provide a promising way for combating multi-drug resistance," concludes Yang.

Explore further: Hydrogel with potent antibacterial activity promises to protect hospital patients from difficult-to-treat infections

More information: Ng, V. W. L., Ke, X., Lee, A. L. Z., Hedrick, J. L. & Yang, Y. Y. "Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria." Advanced Materials 25, 6730–6736 (2013). dx.doi.org/10.1002/adma.201302952

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Researchers successfully clone adult human stem cells

5 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

8 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...