Pushing back against drug-resistant bugs

Jan 22, 2014
Microbiology: Pushing back against drug-resistant bugs
The Pseudomonas aeruginosa bacterium is a common cause of opportunistic infections in humans and has a tendency to acquire resistance to a number of standard antibiotics. Credit: US Centers for Disease Control and Prevention/Janice Haney Carr

Some pathogens can adapt to the presence of drugs that would normally be lethal, and such antibiotic-resistant microbes are now the scourge of hospitals worldwide. Discovering new antibiotics is a laborious process, but research from a team led by Yi Yan Yang of the A*STAR Institute of Bioengineering and Nanotechnology, Singapore, and James Hedrick of the IBM Almaden Research Center, United States, could breathe new life into existing drugs.

One of the standard escape mechanisms employed by bacteria such as Pseudomonas aeruginosa (see image) entails increased production of proteins that purge or break down drug molecules. Polymers that stick to and disrupt bacterial membranes offer an alternative means for killing resistant cells. However, at elevated concentrations these polymers can also inflict damage on bystander host cells. Yang and Hedrick's team explored whether a combination of polymers and antibiotics might offer a safer alternative that draws on the strengths of both approaches.

They generated two different polymers—which they combined with vitamin E, a standard component of the diet of humans—with chemical properties that enabled them to penetrate cell membranes. Both proved more toxic to microbes than the same polymers without vitamin E, efficiently killing P. aeruginosa as well as two other pathogens, the bacterium Staphylococcus aureus and the fungus Candida albicans. Microscopic analysis indicated that the polymers worked by punching holes in the outer membranes of bacterial and fungal cells. Importantly, none of these compounds proved seriously toxic to rat at their effective doses, suggesting that their effects should be relatively specific to their pathogenic targets.

The team subsequently evaluated whether such constructs could bolster antibiotics that tend to lose efficacy against P. aeruginosa. They took the vitamin E-linked polymer formulation that had performed the best against this bacterium and combined it with the doxycycline, streptomycin or penicillin G. While all three received a boost from being combined with the polymer, doxycycline showed the greatest promise, proving capable of effectively eradicating bacteria at very low concentrations of both the drug and polymer. This combination also appeared to generate a greater number of holes in the bacterial cell surface, despite doxycycline not normally damaging the outer membrane when acting on its own.

The researchers hypothesize that the two-pronged attack gives doxycycline rapid access to the cellular interior, thus overwhelming the microbe before it has the opportunity to eliminate the drug. "These synergistic combinations may provide a promising way for combating multi-drug resistance," concludes Yang.

Explore further: New way to fight antibiotic-resistant bacteria: Target human cells instead

More information: Ng, V. W. L., Ke, X., Lee, A. L. Z., Hedrick, J. L. & Yang, Y. Y. "Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria." Advanced Materials 25, 6730–6736 (2013). dx.doi.org/10.1002/adma.201302952

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0